Source code for fontTools.pens.cu2quPen

# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import operator
from fontTools.cu2qu import curve_to_quadratic, curves_to_quadratic
from fontTools.pens.basePen import decomposeSuperBezierSegment
from fontTools.pens.filterPen import FilterPen
from fontTools.pens.reverseContourPen import ReverseContourPen
from fontTools.pens.pointPen import BasePointToSegmentPen
from fontTools.pens.pointPen import ReverseContourPointPen


[docs] class Cu2QuPen(FilterPen): """A filter pen to convert cubic bezier curves to quadratic b-splines using the FontTools SegmentPen protocol. Args: other_pen: another SegmentPen used to draw the transformed outline. max_err: maximum approximation error in font units. For optimal results, if you know the UPEM of the font, we recommend setting this to a value equal, or close to UPEM / 1000. reverse_direction: flip the contours' direction but keep starting point. stats: a dictionary counting the point numbers of quadratic segments. all_quadratic: if True (default), only quadratic b-splines are generated. if False, quadratic curves or cubic curves are generated depending on which one is more economical. """ def __init__( self, other_pen, max_err, reverse_direction=False, stats=None, all_quadratic=True, ): if reverse_direction: other_pen = ReverseContourPen(other_pen) super().__init__(other_pen) self.max_err = max_err self.stats = stats self.all_quadratic = all_quadratic def _convert_curve(self, pt1, pt2, pt3): curve = (self.current_pt, pt1, pt2, pt3) result = curve_to_quadratic(curve, self.max_err, self.all_quadratic) if self.stats is not None: n = str(len(result) - 2) self.stats[n] = self.stats.get(n, 0) + 1 if self.all_quadratic: self.qCurveTo(*result[1:]) else: if len(result) == 3: self.qCurveTo(*result[1:]) else: assert len(result) == 4 super().curveTo(*result[1:])
[docs] def curveTo(self, *points): n = len(points) if n == 3: # this is the most common case, so we special-case it self._convert_curve(*points) elif n > 3: for segment in decomposeSuperBezierSegment(points): self._convert_curve(*segment) else: self.qCurveTo(*points)
[docs] class Cu2QuPointPen(BasePointToSegmentPen): """A filter pen to convert cubic bezier curves to quadratic b-splines using the FontTools PointPen protocol. Args: other_point_pen: another PointPen used to draw the transformed outline. max_err: maximum approximation error in font units. For optimal results, if you know the UPEM of the font, we recommend setting this to a value equal, or close to UPEM / 1000. reverse_direction: reverse the winding direction of all contours. stats: a dictionary counting the point numbers of quadratic segments. all_quadratic: if True (default), only quadratic b-splines are generated. if False, quadratic curves or cubic curves are generated depending on which one is more economical. """ __points_required = { "move": (1, operator.eq), "line": (1, operator.eq), "qcurve": (2, operator.ge), "curve": (3, operator.eq), } def __init__( self, other_point_pen, max_err, reverse_direction=False, stats=None, all_quadratic=True, ): BasePointToSegmentPen.__init__(self) if reverse_direction: self.pen = ReverseContourPointPen(other_point_pen) else: self.pen = other_point_pen self.max_err = max_err self.stats = stats self.all_quadratic = all_quadratic def _flushContour(self, segments): assert len(segments) >= 1 closed = segments[0][0] != "move" new_segments = [] prev_points = segments[-1][1] prev_on_curve = prev_points[-1][0] for segment_type, points in segments: if segment_type == "curve": for sub_points in self._split_super_bezier_segments(points): on_curve, smooth, name, kwargs = sub_points[-1] bcp1, bcp2 = sub_points[0][0], sub_points[1][0] cubic = [prev_on_curve, bcp1, bcp2, on_curve] quad = curve_to_quadratic(cubic, self.max_err, self.all_quadratic) if self.stats is not None: n = str(len(quad) - 2) self.stats[n] = self.stats.get(n, 0) + 1 new_points = [(pt, False, None, {}) for pt in quad[1:-1]] new_points.append((on_curve, smooth, name, kwargs)) if self.all_quadratic or len(new_points) == 2: new_segments.append(["qcurve", new_points]) else: new_segments.append(["curve", new_points]) prev_on_curve = sub_points[-1][0] else: new_segments.append([segment_type, points]) prev_on_curve = points[-1][0] if closed: # the BasePointToSegmentPen.endPath method that calls _flushContour # rotates the point list of closed contours so that they end with # the first on-curve point. We restore the original starting point. new_segments = new_segments[-1:] + new_segments[:-1] self._drawPoints(new_segments) def _split_super_bezier_segments(self, points): sub_segments = [] # n is the number of control points n = len(points) - 1 if n == 2: # a simple bezier curve segment sub_segments.append(points) elif n > 2: # a "super" bezier; decompose it on_curve, smooth, name, kwargs = points[-1] num_sub_segments = n - 1 for i, sub_points in enumerate( decomposeSuperBezierSegment([pt for pt, _, _, _ in points]) ): new_segment = [] for point in sub_points[:-1]: new_segment.append((point, False, None, {})) if i == (num_sub_segments - 1): # the last on-curve keeps its original attributes new_segment.append((on_curve, smooth, name, kwargs)) else: # on-curves of sub-segments are always "smooth" new_segment.append((sub_points[-1], True, None, {})) sub_segments.append(new_segment) else: raise AssertionError("expected 2 control points, found: %d" % n) return sub_segments def _drawPoints(self, segments): pen = self.pen pen.beginPath() last_offcurves = [] points_required = self.__points_required for i, (segment_type, points) in enumerate(segments): if segment_type in points_required: n, op = points_required[segment_type] assert op(len(points), n), ( f"illegal {segment_type!r} segment point count: " f"expected {n}, got {len(points)}" ) offcurves = points[:-1] if i == 0: # any off-curve points preceding the first on-curve # will be appended at the end of the contour last_offcurves = offcurves else: for pt, smooth, name, kwargs in offcurves: pen.addPoint(pt, None, smooth, name, **kwargs) pt, smooth, name, kwargs = points[-1] if pt is None: assert segment_type == "qcurve" # special quadratic contour with no on-curve points: # we need to skip the "None" point. See also the Pen # protocol's qCurveTo() method and fontTools.pens.basePen pass else: pen.addPoint(pt, segment_type, smooth, name, **kwargs) else: raise AssertionError("unexpected segment type: %r" % segment_type) for pt, smooth, name, kwargs in last_offcurves: pen.addPoint(pt, None, smooth, name, **kwargs) pen.endPath()
[docs] def addComponent(self, baseGlyphName, transformation): assert self.currentPath is None self.pen.addComponent(baseGlyphName, transformation)
[docs] class Cu2QuMultiPen: """A filter multi-pen to convert cubic bezier curves to quadratic b-splines in a interpolation-compatible manner, using the FontTools SegmentPen protocol. Args: other_pens: list of SegmentPens used to draw the transformed outlines. max_err: maximum approximation error in font units. For optimal results, if you know the UPEM of the font, we recommend setting this to a value equal, or close to UPEM / 1000. reverse_direction: flip the contours' direction but keep starting point. This pen does not follow the normal SegmentPen protocol. Instead, its moveTo/lineTo/qCurveTo/curveTo methods take a list of tuples that are arguments that would normally be passed to a SegmentPen, one item for each of the pens in other_pens. """ # TODO Simplify like 3e8ebcdce592fe8a59ca4c3a294cc9724351e1ce # Remove start_pts and _add_moveTO def __init__(self, other_pens, max_err, reverse_direction=False): if reverse_direction: other_pens = [ ReverseContourPen(pen, outputImpliedClosingLine=True) for pen in other_pens ] self.pens = other_pens self.max_err = max_err self.start_pts = None self.current_pts = None def _check_contour_is_open(self): if self.current_pts is None: raise AssertionError("moveTo is required") def _check_contour_is_closed(self): if self.current_pts is not None: raise AssertionError("closePath or endPath is required") def _add_moveTo(self): if self.start_pts is not None: for pt, pen in zip(self.start_pts, self.pens): pen.moveTo(*pt) self.start_pts = None
[docs] def moveTo(self, pts): self._check_contour_is_closed() self.start_pts = self.current_pts = pts self._add_moveTo()
[docs] def lineTo(self, pts): self._check_contour_is_open() self._add_moveTo() for pt, pen in zip(pts, self.pens): pen.lineTo(*pt) self.current_pts = pts
[docs] def qCurveTo(self, pointsList): self._check_contour_is_open() if len(pointsList[0]) == 1: self.lineTo([(points[0],) for points in pointsList]) return self._add_moveTo() current_pts = [] for points, pen in zip(pointsList, self.pens): pen.qCurveTo(*points) current_pts.append((points[-1],)) self.current_pts = current_pts
def _curves_to_quadratic(self, pointsList): curves = [] for current_pt, points in zip(self.current_pts, pointsList): curves.append(current_pt + points) quadratics = curves_to_quadratic(curves, [self.max_err] * len(curves)) pointsList = [] for quadratic in quadratics: pointsList.append(quadratic[1:]) self.qCurveTo(pointsList)
[docs] def curveTo(self, pointsList): self._check_contour_is_open() self._curves_to_quadratic(pointsList)
[docs] def closePath(self): self._check_contour_is_open() if self.start_pts is None: for pen in self.pens: pen.closePath() self.current_pts = self.start_pts = None
[docs] def endPath(self): self._check_contour_is_open() if self.start_pts is None: for pen in self.pens: pen.endPath() self.current_pts = self.start_pts = None
[docs] def addComponent(self, glyphName, transformations): self._check_contour_is_closed() for trans, pen in zip(transformations, self.pens): pen.addComponent(glyphName, trans)