"""_g_l_y_f.py -- Converter classes for the 'glyf' table."""
from collections import namedtuple
from fontTools.misc import sstruct
from fontTools import ttLib
from fontTools import version
from fontTools.misc.transform import DecomposedTransform
from fontTools.misc.textTools import tostr, safeEval, pad
from fontTools.misc.arrayTools import updateBounds, pointInRect
from fontTools.misc.bezierTools import calcQuadraticBounds
from fontTools.misc.fixedTools import (
fixedToFloat as fi2fl,
floatToFixed as fl2fi,
floatToFixedToStr as fl2str,
strToFixedToFloat as str2fl,
)
from fontTools.misc.roundTools import noRound, otRound
from fontTools.misc.vector import Vector
from numbers import Number
from . import DefaultTable
from . import ttProgram
import sys
import struct
import array
import logging
import math
import os
from fontTools.misc import xmlWriter
from fontTools.misc.filenames import userNameToFileName
from fontTools.misc.loggingTools import deprecateFunction
from enum import IntFlag
from functools import partial
from types import SimpleNamespace
from typing import Set
log = logging.getLogger(__name__)
# We compute the version the same as is computed in ttlib/__init__
# so that we can write 'ttLibVersion' attribute of the glyf TTX files
# when glyf is written to separate files.
version = ".".join(version.split(".")[:2])
#
# The Apple and MS rasterizers behave differently for
# scaled composite components: one does scale first and then translate
# and the other does it vice versa. MS defined some flags to indicate
# the difference, but it seems nobody actually _sets_ those flags.
#
# Funny thing: Apple seems to _only_ do their thing in the
# WE_HAVE_A_SCALE (eg. Chicago) case, and not when it's WE_HAVE_AN_X_AND_Y_SCALE
# (eg. Charcoal)...
#
SCALE_COMPONENT_OFFSET_DEFAULT = 0 # 0 == MS, 1 == Apple
[docs]
class table__g_l_y_f(DefaultTable.DefaultTable):
"""Glyph Data Table
This class represents the `glyf <https://docs.microsoft.com/en-us/typography/opentype/spec/glyf>`_
table, which contains outlines for glyphs in TrueType format. In many cases,
it is easier to access and manipulate glyph outlines through the ``GlyphSet``
object returned from :py:meth:`fontTools.ttLib.ttFont.getGlyphSet`::
>> from fontTools.pens.boundsPen import BoundsPen
>> glyphset = font.getGlyphSet()
>> bp = BoundsPen(glyphset)
>> glyphset["A"].draw(bp)
>> bp.bounds
(19, 0, 633, 716)
However, this class can be used for low-level access to the ``glyf`` table data.
Objects of this class support dictionary-like access, mapping glyph names to
:py:class:`Glyph` objects::
>> glyf = font["glyf"]
>> len(glyf["Aacute"].components)
2
Note that when adding glyphs to the font via low-level access to the ``glyf``
table, the new glyphs must also be added to the ``hmtx``/``vmtx`` table::
>> font["glyf"]["divisionslash"] = Glyph()
>> font["hmtx"]["divisionslash"] = (640, 0)
"""
dependencies = ["fvar"]
# this attribute controls the amount of padding applied to glyph data upon compile.
# Glyph lenghts are aligned to multiples of the specified value.
# Allowed values are (0, 1, 2, 4). '0' means no padding; '1' (default) also means
# no padding, except for when padding would allow to use short loca offsets.
padding = 1
def decompile(self, data, ttFont):
self.axisTags = (
[axis.axisTag for axis in ttFont["fvar"].axes] if "fvar" in ttFont else []
)
loca = ttFont["loca"]
pos = int(loca[0])
nextPos = 0
noname = 0
self.glyphs = {}
self.glyphOrder = glyphOrder = ttFont.getGlyphOrder()
self._reverseGlyphOrder = {}
for i in range(0, len(loca) - 1):
try:
glyphName = glyphOrder[i]
except IndexError:
noname = noname + 1
glyphName = "ttxautoglyph%s" % i
nextPos = int(loca[i + 1])
glyphdata = data[pos:nextPos]
if len(glyphdata) != (nextPos - pos):
raise ttLib.TTLibError("not enough 'glyf' table data")
glyph = Glyph(glyphdata)
self.glyphs[glyphName] = glyph
pos = nextPos
if len(data) - nextPos >= 4:
log.warning(
"too much 'glyf' table data: expected %d, received %d bytes",
nextPos,
len(data),
)
if noname:
log.warning("%s glyphs have no name", noname)
if ttFont.lazy is False: # Be lazy for None and True
self.ensureDecompiled()
def ensureDecompiled(self, recurse=False):
# The recurse argument is unused, but part of the signature of
# ensureDecompiled across the library.
for glyph in self.glyphs.values():
glyph.expand(self)
def compile(self, ttFont):
self.axisTags = (
[axis.axisTag for axis in ttFont["fvar"].axes] if "fvar" in ttFont else []
)
if not hasattr(self, "glyphOrder"):
self.glyphOrder = ttFont.getGlyphOrder()
padding = self.padding
assert padding in (0, 1, 2, 4)
locations = []
currentLocation = 0
dataList = []
recalcBBoxes = ttFont.recalcBBoxes
boundsDone = set()
for glyphName in self.glyphOrder:
glyph = self.glyphs[glyphName]
glyphData = glyph.compile(self, recalcBBoxes, boundsDone=boundsDone)
if padding > 1:
glyphData = pad(glyphData, size=padding)
locations.append(currentLocation)
currentLocation = currentLocation + len(glyphData)
dataList.append(glyphData)
locations.append(currentLocation)
if padding == 1 and currentLocation < 0x20000:
# See if we can pad any odd-lengthed glyphs to allow loca
# table to use the short offsets.
indices = [
i for i, glyphData in enumerate(dataList) if len(glyphData) % 2 == 1
]
if indices and currentLocation + len(indices) < 0x20000:
# It fits. Do it.
for i in indices:
dataList[i] += b"\0"
currentLocation = 0
for i, glyphData in enumerate(dataList):
locations[i] = currentLocation
currentLocation += len(glyphData)
locations[len(dataList)] = currentLocation
data = b"".join(dataList)
if "loca" in ttFont:
ttFont["loca"].set(locations)
if "maxp" in ttFont:
ttFont["maxp"].numGlyphs = len(self.glyphs)
if not data:
# As a special case when all glyph in the font are empty, add a zero byte
# to the table, so that OTS doesn’t reject it, and to make the table work
# on Windows as well.
# See https://github.com/khaledhosny/ots/issues/52
data = b"\0"
return data
def toXML(self, writer, ttFont, splitGlyphs=False):
notice = (
"The xMin, yMin, xMax and yMax values\n"
"will be recalculated by the compiler."
)
glyphNames = ttFont.getGlyphNames()
if not splitGlyphs:
writer.newline()
writer.comment(notice)
writer.newline()
writer.newline()
numGlyphs = len(glyphNames)
if splitGlyphs:
path, ext = os.path.splitext(writer.file.name)
existingGlyphFiles = set()
for glyphName in glyphNames:
glyph = self.get(glyphName)
if glyph is None:
log.warning("glyph '%s' does not exist in glyf table", glyphName)
continue
if glyph.numberOfContours:
if splitGlyphs:
glyphPath = userNameToFileName(
tostr(glyphName, "utf-8"),
existingGlyphFiles,
prefix=path + ".",
suffix=ext,
)
existingGlyphFiles.add(glyphPath.lower())
glyphWriter = xmlWriter.XMLWriter(
glyphPath,
idlefunc=writer.idlefunc,
newlinestr=writer.newlinestr,
)
glyphWriter.begintag("ttFont", ttLibVersion=version)
glyphWriter.newline()
glyphWriter.begintag("glyf")
glyphWriter.newline()
glyphWriter.comment(notice)
glyphWriter.newline()
writer.simpletag("TTGlyph", src=os.path.basename(glyphPath))
else:
glyphWriter = writer
glyphWriter.begintag(
"TTGlyph",
[
("name", glyphName),
("xMin", glyph.xMin),
("yMin", glyph.yMin),
("xMax", glyph.xMax),
("yMax", glyph.yMax),
],
)
glyphWriter.newline()
glyph.toXML(glyphWriter, ttFont)
glyphWriter.endtag("TTGlyph")
glyphWriter.newline()
if splitGlyphs:
glyphWriter.endtag("glyf")
glyphWriter.newline()
glyphWriter.endtag("ttFont")
glyphWriter.newline()
glyphWriter.close()
else:
writer.simpletag("TTGlyph", name=glyphName)
writer.comment("contains no outline data")
if not splitGlyphs:
writer.newline()
writer.newline()
def fromXML(self, name, attrs, content, ttFont):
if name != "TTGlyph":
return
if not hasattr(self, "glyphs"):
self.glyphs = {}
if not hasattr(self, "glyphOrder"):
self.glyphOrder = ttFont.getGlyphOrder()
glyphName = attrs["name"]
log.debug("unpacking glyph '%s'", glyphName)
glyph = Glyph()
for attr in ["xMin", "yMin", "xMax", "yMax"]:
setattr(glyph, attr, safeEval(attrs.get(attr, "0")))
self.glyphs[glyphName] = glyph
for element in content:
if not isinstance(element, tuple):
continue
name, attrs, content = element
glyph.fromXML(name, attrs, content, ttFont)
if not ttFont.recalcBBoxes:
glyph.compact(self, 0)
[docs]
def setGlyphOrder(self, glyphOrder):
"""Sets the glyph order
Args:
glyphOrder ([str]): List of glyph names in order.
"""
self.glyphOrder = glyphOrder
self._reverseGlyphOrder = {}
[docs]
def getGlyphName(self, glyphID):
"""Returns the name for the glyph with the given ID.
Raises a ``KeyError`` if the glyph name is not found in the font.
"""
return self.glyphOrder[glyphID]
def _buildReverseGlyphOrderDict(self):
self._reverseGlyphOrder = d = {}
for glyphID, glyphName in enumerate(self.glyphOrder):
d[glyphName] = glyphID
[docs]
def getGlyphID(self, glyphName):
"""Returns the ID of the glyph with the given name.
Raises a ``ValueError`` if the glyph is not found in the font.
"""
glyphOrder = self.glyphOrder
id = getattr(self, "_reverseGlyphOrder", {}).get(glyphName)
if id is None or id >= len(glyphOrder) or glyphOrder[id] != glyphName:
self._buildReverseGlyphOrderDict()
id = self._reverseGlyphOrder.get(glyphName)
if id is None:
raise ValueError(glyphName)
return id
[docs]
def removeHinting(self):
"""Removes TrueType hints from all glyphs in the glyphset.
See :py:meth:`Glyph.removeHinting`.
"""
for glyph in self.glyphs.values():
glyph.removeHinting()
def keys(self):
return self.glyphs.keys()
def has_key(self, glyphName):
return glyphName in self.glyphs
__contains__ = has_key
def get(self, glyphName, default=None):
glyph = self.glyphs.get(glyphName, default)
if glyph is not None:
glyph.expand(self)
return glyph
def __getitem__(self, glyphName):
glyph = self.glyphs[glyphName]
glyph.expand(self)
return glyph
def __setitem__(self, glyphName, glyph):
self.glyphs[glyphName] = glyph
if glyphName not in self.glyphOrder:
self.glyphOrder.append(glyphName)
def __delitem__(self, glyphName):
del self.glyphs[glyphName]
self.glyphOrder.remove(glyphName)
def __len__(self):
assert len(self.glyphOrder) == len(self.glyphs)
return len(self.glyphs)
def _getPhantomPoints(self, glyphName, hMetrics, vMetrics=None):
"""Compute the four "phantom points" for the given glyph from its bounding box
and the horizontal and vertical advance widths and sidebearings stored in the
ttFont's "hmtx" and "vmtx" tables.
'hMetrics' should be ttFont['hmtx'].metrics.
'vMetrics' should be ttFont['vmtx'].metrics if there is "vmtx" or None otherwise.
If there is no vMetrics passed in, vertical phantom points are set to the zero coordinate.
https://docs.microsoft.com/en-us/typography/opentype/spec/tt_instructing_glyphs#phantoms
"""
glyph = self[glyphName]
if not hasattr(glyph, "xMin"):
glyph.recalcBounds(self)
horizontalAdvanceWidth, leftSideBearing = hMetrics[glyphName]
leftSideX = glyph.xMin - leftSideBearing
rightSideX = leftSideX + horizontalAdvanceWidth
if vMetrics:
verticalAdvanceWidth, topSideBearing = vMetrics[glyphName]
topSideY = topSideBearing + glyph.yMax
bottomSideY = topSideY - verticalAdvanceWidth
else:
bottomSideY = topSideY = 0
return [
(leftSideX, 0),
(rightSideX, 0),
(0, topSideY),
(0, bottomSideY),
]
def _getCoordinatesAndControls(
self, glyphName, hMetrics, vMetrics=None, *, round=otRound
):
"""Return glyph coordinates and controls as expected by "gvar" table.
The coordinates includes four "phantom points" for the glyph metrics,
as mandated by the "gvar" spec.
The glyph controls is a namedtuple with the following attributes:
- numberOfContours: -1 for composite glyphs.
- endPts: list of indices of end points for each contour in simple
glyphs, or component indices in composite glyphs (used for IUP
optimization).
- flags: array of contour point flags for simple glyphs (None for
composite glyphs).
- components: list of base glyph names (str) for each component in
composite glyphs (None for simple glyphs).
The "hMetrics" and vMetrics are used to compute the "phantom points" (see
the "_getPhantomPoints" method).
Return None if the requested glyphName is not present.
"""
glyph = self.get(glyphName)
if glyph is None:
return None
if glyph.isComposite():
coords = GlyphCoordinates(
[(getattr(c, "x", 0), getattr(c, "y", 0)) for c in glyph.components]
)
controls = _GlyphControls(
numberOfContours=glyph.numberOfContours,
endPts=list(range(len(glyph.components))),
flags=None,
components=[
(c.glyphName, getattr(c, "transform", None))
for c in glyph.components
],
)
else:
coords, endPts, flags = glyph.getCoordinates(self)
coords = coords.copy()
controls = _GlyphControls(
numberOfContours=glyph.numberOfContours,
endPts=endPts,
flags=flags,
components=None,
)
# Add phantom points for (left, right, top, bottom) positions.
phantomPoints = self._getPhantomPoints(glyphName, hMetrics, vMetrics)
coords.extend(phantomPoints)
coords.toInt(round=round)
return coords, controls
def _setCoordinates(self, glyphName, coord, hMetrics, vMetrics=None):
"""Set coordinates and metrics for the given glyph.
"coord" is an array of GlyphCoordinates which must include the "phantom
points" as the last four coordinates.
Both the horizontal/vertical advances and left/top sidebearings in "hmtx"
and "vmtx" tables (if any) are updated from four phantom points and
the glyph's bounding boxes.
The "hMetrics" and vMetrics are used to propagate "phantom points"
into "hmtx" and "vmtx" tables if desired. (see the "_getPhantomPoints"
method).
"""
glyph = self[glyphName]
# Handle phantom points for (left, right, top, bottom) positions.
assert len(coord) >= 4
leftSideX = coord[-4][0]
rightSideX = coord[-3][0]
topSideY = coord[-2][1]
bottomSideY = coord[-1][1]
coord = coord[:-4]
if glyph.isComposite():
assert len(coord) == len(glyph.components)
for p, comp in zip(coord, glyph.components):
if hasattr(comp, "x"):
comp.x, comp.y = p
elif glyph.numberOfContours == 0:
assert len(coord) == 0
else:
assert len(coord) == len(glyph.coordinates)
glyph.coordinates = GlyphCoordinates(coord)
glyph.recalcBounds(self, boundsDone=set())
horizontalAdvanceWidth = otRound(rightSideX - leftSideX)
if horizontalAdvanceWidth < 0:
# unlikely, but it can happen, see:
# https://github.com/fonttools/fonttools/pull/1198
horizontalAdvanceWidth = 0
leftSideBearing = otRound(glyph.xMin - leftSideX)
hMetrics[glyphName] = horizontalAdvanceWidth, leftSideBearing
if vMetrics is not None:
verticalAdvanceWidth = otRound(topSideY - bottomSideY)
if verticalAdvanceWidth < 0: # unlikely but do the same as horizontal
verticalAdvanceWidth = 0
topSideBearing = otRound(topSideY - glyph.yMax)
vMetrics[glyphName] = verticalAdvanceWidth, topSideBearing
# Deprecated
def _synthesizeVMetrics(self, glyphName, ttFont, defaultVerticalOrigin):
"""This method is wrong and deprecated.
For rationale see:
https://github.com/fonttools/fonttools/pull/2266/files#r613569473
"""
vMetrics = getattr(ttFont.get("vmtx"), "metrics", None)
if vMetrics is None:
verticalAdvanceWidth = ttFont["head"].unitsPerEm
topSideY = getattr(ttFont.get("hhea"), "ascent", None)
if topSideY is None:
if defaultVerticalOrigin is not None:
topSideY = defaultVerticalOrigin
else:
topSideY = verticalAdvanceWidth
glyph = self[glyphName]
glyph.recalcBounds(self)
topSideBearing = otRound(topSideY - glyph.yMax)
vMetrics = {glyphName: (verticalAdvanceWidth, topSideBearing)}
return vMetrics
[docs]
@deprecateFunction("use '_getPhantomPoints' instead", category=DeprecationWarning)
def getPhantomPoints(self, glyphName, ttFont, defaultVerticalOrigin=None):
"""Old public name for self._getPhantomPoints().
See: https://github.com/fonttools/fonttools/pull/2266"""
hMetrics = ttFont["hmtx"].metrics
vMetrics = self._synthesizeVMetrics(glyphName, ttFont, defaultVerticalOrigin)
return self._getPhantomPoints(glyphName, hMetrics, vMetrics)
[docs]
@deprecateFunction(
"use '_getCoordinatesAndControls' instead", category=DeprecationWarning
)
def getCoordinatesAndControls(self, glyphName, ttFont, defaultVerticalOrigin=None):
"""Old public name for self._getCoordinatesAndControls().
See: https://github.com/fonttools/fonttools/pull/2266"""
hMetrics = ttFont["hmtx"].metrics
vMetrics = self._synthesizeVMetrics(glyphName, ttFont, defaultVerticalOrigin)
return self._getCoordinatesAndControls(glyphName, hMetrics, vMetrics)
[docs]
@deprecateFunction("use '_setCoordinates' instead", category=DeprecationWarning)
def setCoordinates(self, glyphName, ttFont):
"""Old public name for self._setCoordinates().
See: https://github.com/fonttools/fonttools/pull/2266"""
hMetrics = ttFont["hmtx"].metrics
vMetrics = getattr(ttFont.get("vmtx"), "metrics", None)
self._setCoordinates(glyphName, hMetrics, vMetrics)
_GlyphControls = namedtuple(
"_GlyphControls", "numberOfContours endPts flags components"
)
glyphHeaderFormat = """
> # big endian
numberOfContours: h
xMin: h
yMin: h
xMax: h
yMax: h
"""
# flags
flagOnCurve = 0x01
flagXShort = 0x02
flagYShort = 0x04
flagRepeat = 0x08
flagXsame = 0x10
flagYsame = 0x20
flagOverlapSimple = 0x40
flagCubic = 0x80
# These flags are kept for XML output after decompiling the coordinates
keepFlags = flagOnCurve + flagOverlapSimple + flagCubic
_flagSignBytes = {
0: 2,
flagXsame: 0,
flagXShort | flagXsame: +1,
flagXShort: -1,
flagYsame: 0,
flagYShort | flagYsame: +1,
flagYShort: -1,
}
def flagBest(x, y, onCurve):
"""For a given x,y delta pair, returns the flag that packs this pair
most efficiently, as well as the number of byte cost of such flag."""
flag = flagOnCurve if onCurve else 0
cost = 0
# do x
if x == 0:
flag = flag | flagXsame
elif -255 <= x <= 255:
flag = flag | flagXShort
if x > 0:
flag = flag | flagXsame
cost += 1
else:
cost += 2
# do y
if y == 0:
flag = flag | flagYsame
elif -255 <= y <= 255:
flag = flag | flagYShort
if y > 0:
flag = flag | flagYsame
cost += 1
else:
cost += 2
return flag, cost
def flagFits(newFlag, oldFlag, mask):
newBytes = _flagSignBytes[newFlag & mask]
oldBytes = _flagSignBytes[oldFlag & mask]
return newBytes == oldBytes or abs(newBytes) > abs(oldBytes)
def flagSupports(newFlag, oldFlag):
return (
(oldFlag & flagOnCurve) == (newFlag & flagOnCurve)
and flagFits(newFlag, oldFlag, flagXsame | flagXShort)
and flagFits(newFlag, oldFlag, flagYsame | flagYShort)
)
def flagEncodeCoord(flag, mask, coord, coordBytes):
byteCount = _flagSignBytes[flag & mask]
if byteCount == 1:
coordBytes.append(coord)
elif byteCount == -1:
coordBytes.append(-coord)
elif byteCount == 2:
coordBytes.extend(struct.pack(">h", coord))
def flagEncodeCoords(flag, x, y, xBytes, yBytes):
flagEncodeCoord(flag, flagXsame | flagXShort, x, xBytes)
flagEncodeCoord(flag, flagYsame | flagYShort, y, yBytes)
ARG_1_AND_2_ARE_WORDS = 0x0001 # if set args are words otherwise they are bytes
ARGS_ARE_XY_VALUES = 0x0002 # if set args are xy values, otherwise they are points
ROUND_XY_TO_GRID = 0x0004 # for the xy values if above is true
WE_HAVE_A_SCALE = 0x0008 # Sx = Sy, otherwise scale == 1.0
NON_OVERLAPPING = 0x0010 # set to same value for all components (obsolete!)
MORE_COMPONENTS = 0x0020 # indicates at least one more glyph after this one
WE_HAVE_AN_X_AND_Y_SCALE = 0x0040 # Sx, Sy
WE_HAVE_A_TWO_BY_TWO = 0x0080 # t00, t01, t10, t11
WE_HAVE_INSTRUCTIONS = 0x0100 # instructions follow
USE_MY_METRICS = 0x0200 # apply these metrics to parent glyph
OVERLAP_COMPOUND = 0x0400 # used by Apple in GX fonts
SCALED_COMPONENT_OFFSET = 0x0800 # composite designed to have the component offset scaled (designed for Apple)
UNSCALED_COMPONENT_OFFSET = 0x1000 # composite designed not to have the component offset scaled (designed for MS)
CompositeMaxpValues = namedtuple(
"CompositeMaxpValues", ["nPoints", "nContours", "maxComponentDepth"]
)
[docs]
class Glyph(object):
"""This class represents an individual TrueType glyph.
TrueType glyph objects come in two flavours: simple and composite. Simple
glyph objects contain contours, represented via the ``.coordinates``,
``.flags``, ``.numberOfContours``, and ``.endPtsOfContours`` attributes;
composite glyphs contain components, available through the ``.components``
attributes.
Because the ``.coordinates`` attribute (and other simple glyph attributes mentioned
above) is only set on simple glyphs and the ``.components`` attribute is only
set on composite glyphs, it is necessary to use the :py:meth:`isComposite`
method to test whether a glyph is simple or composite before attempting to
access its data.
For a composite glyph, the components can also be accessed via array-like access::
>> assert(font["glyf"]["Aacute"].isComposite())
>> font["glyf"]["Aacute"][0]
<fontTools.ttLib.tables._g_l_y_f.GlyphComponent at 0x1027b2ee0>
"""
def __init__(self, data=b""):
if not data:
# empty char
self.numberOfContours = 0
return
self.data = data
def compact(self, glyfTable, recalcBBoxes=True):
data = self.compile(glyfTable, recalcBBoxes)
self.__dict__.clear()
self.data = data
def expand(self, glyfTable):
if not hasattr(self, "data"):
# already unpacked
return
if not self.data:
# empty char
del self.data
self.numberOfContours = 0
return
dummy, data = sstruct.unpack2(glyphHeaderFormat, self.data, self)
del self.data
# Some fonts (eg. Neirizi.ttf) have a 0 for numberOfContours in
# some glyphs; decompileCoordinates assumes that there's at least
# one, so short-circuit here.
if self.numberOfContours == 0:
return
if self.isComposite():
self.decompileComponents(data, glyfTable)
else:
self.decompileCoordinates(data)
def compile(
self, glyfTable, recalcBBoxes=True, *, boundsDone=None, optimizeSize=None
):
if hasattr(self, "data"):
if recalcBBoxes:
# must unpack glyph in order to recalculate bounding box
self.expand(glyfTable)
else:
return self.data
if self.numberOfContours == 0:
return b""
if recalcBBoxes:
self.recalcBounds(glyfTable, boundsDone=boundsDone)
data = sstruct.pack(glyphHeaderFormat, self)
if self.isComposite():
data = data + self.compileComponents(glyfTable)
else:
if optimizeSize is None:
optimizeSize = getattr(glyfTable, "optimizeSize", True)
data = data + self.compileCoordinates(optimizeSize=optimizeSize)
return data
def toXML(self, writer, ttFont):
if self.isComposite():
for compo in self.components:
compo.toXML(writer, ttFont)
haveInstructions = hasattr(self, "program")
else:
last = 0
for i in range(self.numberOfContours):
writer.begintag("contour")
writer.newline()
for j in range(last, self.endPtsOfContours[i] + 1):
attrs = [
("x", self.coordinates[j][0]),
("y", self.coordinates[j][1]),
("on", self.flags[j] & flagOnCurve),
]
if self.flags[j] & flagOverlapSimple:
# Apple's rasterizer uses flagOverlapSimple in the first contour/first pt to flag glyphs that contain overlapping contours
attrs.append(("overlap", 1))
if self.flags[j] & flagCubic:
attrs.append(("cubic", 1))
writer.simpletag("pt", attrs)
writer.newline()
last = self.endPtsOfContours[i] + 1
writer.endtag("contour")
writer.newline()
haveInstructions = self.numberOfContours > 0
if haveInstructions:
if self.program:
writer.begintag("instructions")
writer.newline()
self.program.toXML(writer, ttFont)
writer.endtag("instructions")
else:
writer.simpletag("instructions")
writer.newline()
def fromXML(self, name, attrs, content, ttFont):
if name == "contour":
if self.numberOfContours < 0:
raise ttLib.TTLibError("can't mix composites and contours in glyph")
self.numberOfContours = self.numberOfContours + 1
coordinates = GlyphCoordinates()
flags = bytearray()
for element in content:
if not isinstance(element, tuple):
continue
name, attrs, content = element
if name != "pt":
continue # ignore anything but "pt"
coordinates.append((safeEval(attrs["x"]), safeEval(attrs["y"])))
flag = bool(safeEval(attrs["on"]))
if "overlap" in attrs and bool(safeEval(attrs["overlap"])):
flag |= flagOverlapSimple
if "cubic" in attrs and bool(safeEval(attrs["cubic"])):
flag |= flagCubic
flags.append(flag)
if not hasattr(self, "coordinates"):
self.coordinates = coordinates
self.flags = flags
self.endPtsOfContours = [len(coordinates) - 1]
else:
self.coordinates.extend(coordinates)
self.flags.extend(flags)
self.endPtsOfContours.append(len(self.coordinates) - 1)
elif name == "component":
if self.numberOfContours > 0:
raise ttLib.TTLibError("can't mix composites and contours in glyph")
self.numberOfContours = -1
if not hasattr(self, "components"):
self.components = []
component = GlyphComponent()
self.components.append(component)
component.fromXML(name, attrs, content, ttFont)
elif name == "instructions":
self.program = ttProgram.Program()
for element in content:
if not isinstance(element, tuple):
continue
name, attrs, content = element
self.program.fromXML(name, attrs, content, ttFont)
def getCompositeMaxpValues(self, glyfTable, maxComponentDepth=1):
assert self.isComposite()
nContours = 0
nPoints = 0
initialMaxComponentDepth = maxComponentDepth
for compo in self.components:
baseGlyph = glyfTable[compo.glyphName]
if baseGlyph.numberOfContours == 0:
continue
elif baseGlyph.numberOfContours > 0:
nP, nC = baseGlyph.getMaxpValues()
else:
nP, nC, componentDepth = baseGlyph.getCompositeMaxpValues(
glyfTable, initialMaxComponentDepth + 1
)
maxComponentDepth = max(maxComponentDepth, componentDepth)
nPoints = nPoints + nP
nContours = nContours + nC
return CompositeMaxpValues(nPoints, nContours, maxComponentDepth)
def getMaxpValues(self):
assert self.numberOfContours > 0
return len(self.coordinates), len(self.endPtsOfContours)
def decompileComponents(self, data, glyfTable):
self.components = []
more = 1
haveInstructions = 0
while more:
component = GlyphComponent()
more, haveInstr, data = component.decompile(data, glyfTable)
haveInstructions = haveInstructions | haveInstr
self.components.append(component)
if haveInstructions:
(numInstructions,) = struct.unpack(">h", data[:2])
data = data[2:]
self.program = ttProgram.Program()
self.program.fromBytecode(data[:numInstructions])
data = data[numInstructions:]
if len(data) >= 4:
log.warning(
"too much glyph data at the end of composite glyph: %d excess bytes",
len(data),
)
def decompileCoordinates(self, data):
endPtsOfContours = array.array("H")
endPtsOfContours.frombytes(data[: 2 * self.numberOfContours])
if sys.byteorder != "big":
endPtsOfContours.byteswap()
self.endPtsOfContours = endPtsOfContours.tolist()
pos = 2 * self.numberOfContours
(instructionLength,) = struct.unpack(">h", data[pos : pos + 2])
self.program = ttProgram.Program()
self.program.fromBytecode(data[pos + 2 : pos + 2 + instructionLength])
pos += 2 + instructionLength
nCoordinates = self.endPtsOfContours[-1] + 1
flags, xCoordinates, yCoordinates = self.decompileCoordinatesRaw(
nCoordinates, data, pos
)
# fill in repetitions and apply signs
self.coordinates = coordinates = GlyphCoordinates.zeros(nCoordinates)
xIndex = 0
yIndex = 0
for i in range(nCoordinates):
flag = flags[i]
# x coordinate
if flag & flagXShort:
if flag & flagXsame:
x = xCoordinates[xIndex]
else:
x = -xCoordinates[xIndex]
xIndex = xIndex + 1
elif flag & flagXsame:
x = 0
else:
x = xCoordinates[xIndex]
xIndex = xIndex + 1
# y coordinate
if flag & flagYShort:
if flag & flagYsame:
y = yCoordinates[yIndex]
else:
y = -yCoordinates[yIndex]
yIndex = yIndex + 1
elif flag & flagYsame:
y = 0
else:
y = yCoordinates[yIndex]
yIndex = yIndex + 1
coordinates[i] = (x, y)
assert xIndex == len(xCoordinates)
assert yIndex == len(yCoordinates)
coordinates.relativeToAbsolute()
# discard all flags except "keepFlags"
for i in range(len(flags)):
flags[i] &= keepFlags
self.flags = flags
def decompileCoordinatesRaw(self, nCoordinates, data, pos=0):
# unpack flags and prepare unpacking of coordinates
flags = bytearray(nCoordinates)
# Warning: deep Python trickery going on. We use the struct module to unpack
# the coordinates. We build a format string based on the flags, so we can
# unpack the coordinates in one struct.unpack() call.
xFormat = ">" # big endian
yFormat = ">" # big endian
j = 0
while True:
flag = data[pos]
pos += 1
repeat = 1
if flag & flagRepeat:
repeat = data[pos] + 1
pos += 1
for k in range(repeat):
if flag & flagXShort:
xFormat = xFormat + "B"
elif not (flag & flagXsame):
xFormat = xFormat + "h"
if flag & flagYShort:
yFormat = yFormat + "B"
elif not (flag & flagYsame):
yFormat = yFormat + "h"
flags[j] = flag
j = j + 1
if j >= nCoordinates:
break
assert j == nCoordinates, "bad glyph flags"
# unpack raw coordinates, krrrrrr-tching!
xDataLen = struct.calcsize(xFormat)
yDataLen = struct.calcsize(yFormat)
if len(data) - pos - (xDataLen + yDataLen) >= 4:
log.warning(
"too much glyph data: %d excess bytes",
len(data) - pos - (xDataLen + yDataLen),
)
xCoordinates = struct.unpack(xFormat, data[pos : pos + xDataLen])
yCoordinates = struct.unpack(
yFormat, data[pos + xDataLen : pos + xDataLen + yDataLen]
)
return flags, xCoordinates, yCoordinates
def compileComponents(self, glyfTable):
data = b""
lastcomponent = len(self.components) - 1
more = 1
haveInstructions = 0
for i in range(len(self.components)):
if i == lastcomponent:
haveInstructions = hasattr(self, "program")
more = 0
compo = self.components[i]
data = data + compo.compile(more, haveInstructions, glyfTable)
if haveInstructions:
instructions = self.program.getBytecode()
data = data + struct.pack(">h", len(instructions)) + instructions
return data
def compileCoordinates(self, *, optimizeSize=True):
assert len(self.coordinates) == len(self.flags)
data = []
endPtsOfContours = array.array("H", self.endPtsOfContours)
if sys.byteorder != "big":
endPtsOfContours.byteswap()
data.append(endPtsOfContours.tobytes())
instructions = self.program.getBytecode()
data.append(struct.pack(">h", len(instructions)))
data.append(instructions)
deltas = self.coordinates.copy()
deltas.toInt()
deltas.absoluteToRelative()
if optimizeSize:
# TODO(behdad): Add a configuration option for this?
deltas = self.compileDeltasGreedy(self.flags, deltas)
# deltas = self.compileDeltasOptimal(self.flags, deltas)
else:
deltas = self.compileDeltasForSpeed(self.flags, deltas)
data.extend(deltas)
return b"".join(data)
def compileDeltasGreedy(self, flags, deltas):
# Implements greedy algorithm for packing coordinate deltas:
# uses shortest representation one coordinate at a time.
compressedFlags = bytearray()
compressedXs = bytearray()
compressedYs = bytearray()
lastflag = None
repeat = 0
for flag, (x, y) in zip(flags, deltas):
# Oh, the horrors of TrueType
# do x
if x == 0:
flag = flag | flagXsame
elif -255 <= x <= 255:
flag = flag | flagXShort
if x > 0:
flag = flag | flagXsame
else:
x = -x
compressedXs.append(x)
else:
compressedXs.extend(struct.pack(">h", x))
# do y
if y == 0:
flag = flag | flagYsame
elif -255 <= y <= 255:
flag = flag | flagYShort
if y > 0:
flag = flag | flagYsame
else:
y = -y
compressedYs.append(y)
else:
compressedYs.extend(struct.pack(">h", y))
# handle repeating flags
if flag == lastflag and repeat != 255:
repeat = repeat + 1
if repeat == 1:
compressedFlags.append(flag)
else:
compressedFlags[-2] = flag | flagRepeat
compressedFlags[-1] = repeat
else:
repeat = 0
compressedFlags.append(flag)
lastflag = flag
return (compressedFlags, compressedXs, compressedYs)
def compileDeltasOptimal(self, flags, deltas):
# Implements optimal, dynaic-programming, algorithm for packing coordinate
# deltas. The savings are negligible :(.
candidates = []
bestTuple = None
bestCost = 0
repeat = 0
for flag, (x, y) in zip(flags, deltas):
# Oh, the horrors of TrueType
flag, coordBytes = flagBest(x, y, flag)
bestCost += 1 + coordBytes
newCandidates = [
(bestCost, bestTuple, flag, coordBytes),
(bestCost + 1, bestTuple, (flag | flagRepeat), coordBytes),
]
for lastCost, lastTuple, lastFlag, coordBytes in candidates:
if (
lastCost + coordBytes <= bestCost + 1
and (lastFlag & flagRepeat)
and (lastFlag < 0xFF00)
and flagSupports(lastFlag, flag)
):
if (lastFlag & 0xFF) == (
flag | flagRepeat
) and lastCost == bestCost + 1:
continue
newCandidates.append(
(lastCost + coordBytes, lastTuple, lastFlag + 256, coordBytes)
)
candidates = newCandidates
bestTuple = min(candidates, key=lambda t: t[0])
bestCost = bestTuple[0]
flags = []
while bestTuple:
cost, bestTuple, flag, coordBytes = bestTuple
flags.append(flag)
flags.reverse()
compressedFlags = bytearray()
compressedXs = bytearray()
compressedYs = bytearray()
coords = iter(deltas)
ff = []
for flag in flags:
repeatCount, flag = flag >> 8, flag & 0xFF
compressedFlags.append(flag)
if flag & flagRepeat:
assert repeatCount > 0
compressedFlags.append(repeatCount)
else:
assert repeatCount == 0
for i in range(1 + repeatCount):
x, y = next(coords)
flagEncodeCoords(flag, x, y, compressedXs, compressedYs)
ff.append(flag)
try:
next(coords)
raise Exception("internal error")
except StopIteration:
pass
return (compressedFlags, compressedXs, compressedYs)
def compileDeltasForSpeed(self, flags, deltas):
# uses widest representation needed, for all deltas.
compressedFlags = bytearray()
compressedXs = bytearray()
compressedYs = bytearray()
# Compute the necessary width for each axis
xs = [d[0] for d in deltas]
ys = [d[1] for d in deltas]
minX, minY, maxX, maxY = min(xs), min(ys), max(xs), max(ys)
xZero = minX == 0 and maxX == 0
yZero = minY == 0 and maxY == 0
xShort = -255 <= minX <= maxX <= 255
yShort = -255 <= minY <= maxY <= 255
lastflag = None
repeat = 0
for flag, (x, y) in zip(flags, deltas):
# Oh, the horrors of TrueType
# do x
if xZero:
flag = flag | flagXsame
elif xShort:
flag = flag | flagXShort
if x > 0:
flag = flag | flagXsame
else:
x = -x
compressedXs.append(x)
else:
compressedXs.extend(struct.pack(">h", x))
# do y
if yZero:
flag = flag | flagYsame
elif yShort:
flag = flag | flagYShort
if y > 0:
flag = flag | flagYsame
else:
y = -y
compressedYs.append(y)
else:
compressedYs.extend(struct.pack(">h", y))
# handle repeating flags
if flag == lastflag and repeat != 255:
repeat = repeat + 1
if repeat == 1:
compressedFlags.append(flag)
else:
compressedFlags[-2] = flag | flagRepeat
compressedFlags[-1] = repeat
else:
repeat = 0
compressedFlags.append(flag)
lastflag = flag
return (compressedFlags, compressedXs, compressedYs)
[docs]
def recalcBounds(self, glyfTable, *, boundsDone=None):
"""Recalculates the bounds of the glyph.
Each glyph object stores its bounding box in the
``xMin``/``yMin``/``xMax``/``yMax`` attributes. These bounds must be
recomputed when the ``coordinates`` change. The ``table__g_l_y_f`` bounds
must be provided to resolve component bounds.
"""
if self.isComposite() and self.tryRecalcBoundsComposite(
glyfTable, boundsDone=boundsDone
):
return
try:
coords, endPts, flags = self.getCoordinates(glyfTable)
self.xMin, self.yMin, self.xMax, self.yMax = coords.calcIntBounds()
except NotImplementedError:
pass
[docs]
def tryRecalcBoundsComposite(self, glyfTable, *, boundsDone=None):
"""Try recalculating the bounds of a composite glyph that has
certain constrained properties. Namely, none of the components
have a transform other than an integer translate, and none
uses the anchor points.
Each glyph object stores its bounding box in the
``xMin``/``yMin``/``xMax``/``yMax`` attributes. These bounds must be
recomputed when the ``coordinates`` change. The ``table__g_l_y_f`` bounds
must be provided to resolve component bounds.
Return True if bounds were calculated, False otherwise.
"""
for compo in self.components:
if hasattr(compo, "firstPt") or hasattr(compo, "transform"):
return False
if not float(compo.x).is_integer() or not float(compo.y).is_integer():
return False
# All components are untransformed and have an integer x/y translate
bounds = None
for compo in self.components:
glyphName = compo.glyphName
g = glyfTable[glyphName]
if boundsDone is None or glyphName not in boundsDone:
g.recalcBounds(glyfTable, boundsDone=boundsDone)
if boundsDone is not None:
boundsDone.add(glyphName)
# empty components shouldn't update the bounds of the parent glyph
if g.numberOfContours == 0:
continue
x, y = compo.x, compo.y
bounds = updateBounds(bounds, (g.xMin + x, g.yMin + y))
bounds = updateBounds(bounds, (g.xMax + x, g.yMax + y))
if bounds is None:
bounds = (0, 0, 0, 0)
self.xMin, self.yMin, self.xMax, self.yMax = bounds
return True
[docs]
def isComposite(self):
"""Test whether a glyph has components"""
if hasattr(self, "data"):
return struct.unpack(">h", self.data[:2])[0] == -1 if self.data else False
else:
return self.numberOfContours == -1
[docs]
def getCoordinates(self, glyfTable):
"""Return the coordinates, end points and flags
This method returns three values: A :py:class:`GlyphCoordinates` object,
a list of the indexes of the final points of each contour (allowing you
to split up the coordinates list into contours) and a list of flags.
On simple glyphs, this method returns information from the glyph's own
contours; on composite glyphs, it "flattens" all components recursively
to return a list of coordinates representing all the components involved
in the glyph.
To interpret the flags for each point, see the "Simple Glyph Flags"
section of the `glyf table specification <https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#simple-glyph-description>`.
"""
if self.numberOfContours > 0:
return self.coordinates, self.endPtsOfContours, self.flags
elif self.isComposite():
# it's a composite
allCoords = GlyphCoordinates()
allFlags = bytearray()
allEndPts = []
for compo in self.components:
g = glyfTable[compo.glyphName]
try:
coordinates, endPts, flags = g.getCoordinates(glyfTable)
except RecursionError:
raise ttLib.TTLibError(
"glyph '%s' contains a recursive component reference"
% compo.glyphName
)
coordinates = GlyphCoordinates(coordinates)
if hasattr(compo, "firstPt"):
# component uses two reference points: we apply the transform _before_
# computing the offset between the points
if hasattr(compo, "transform"):
coordinates.transform(compo.transform)
x1, y1 = allCoords[compo.firstPt]
x2, y2 = coordinates[compo.secondPt]
move = x1 - x2, y1 - y2
coordinates.translate(move)
else:
# component uses XY offsets
move = compo.x, compo.y
if not hasattr(compo, "transform"):
coordinates.translate(move)
else:
apple_way = compo.flags & SCALED_COMPONENT_OFFSET
ms_way = compo.flags & UNSCALED_COMPONENT_OFFSET
assert not (apple_way and ms_way)
if not (apple_way or ms_way):
scale_component_offset = (
SCALE_COMPONENT_OFFSET_DEFAULT # see top of this file
)
else:
scale_component_offset = apple_way
if scale_component_offset:
# the Apple way: first move, then scale (ie. scale the component offset)
coordinates.translate(move)
coordinates.transform(compo.transform)
else:
# the MS way: first scale, then move
coordinates.transform(compo.transform)
coordinates.translate(move)
offset = len(allCoords)
allEndPts.extend(e + offset for e in endPts)
allCoords.extend(coordinates)
allFlags.extend(flags)
return allCoords, allEndPts, allFlags
else:
return GlyphCoordinates(), [], bytearray()
[docs]
def getComponentNames(self, glyfTable):
"""Returns a list of names of component glyphs used in this glyph
This method can be used on simple glyphs (in which case it returns an
empty list) or composite glyphs.
"""
if not hasattr(self, "data"):
if self.isComposite():
return [c.glyphName for c in self.components]
else:
return []
# Extract components without expanding glyph
if not self.data or struct.unpack(">h", self.data[:2])[0] >= 0:
return [] # Not composite
data = self.data
i = 10
components = []
more = 1
while more:
flags, glyphID = struct.unpack(">HH", data[i : i + 4])
i += 4
flags = int(flags)
components.append(glyfTable.getGlyphName(int(glyphID)))
if flags & ARG_1_AND_2_ARE_WORDS:
i += 4
else:
i += 2
if flags & WE_HAVE_A_SCALE:
i += 2
elif flags & WE_HAVE_AN_X_AND_Y_SCALE:
i += 4
elif flags & WE_HAVE_A_TWO_BY_TWO:
i += 8
more = flags & MORE_COMPONENTS
return components
[docs]
def trim(self, remove_hinting=False):
"""Remove padding and, if requested, hinting, from a glyph.
This works on both expanded and compacted glyphs, without
expanding it."""
if not hasattr(self, "data"):
if remove_hinting:
if self.isComposite():
if hasattr(self, "program"):
del self.program
else:
self.program = ttProgram.Program()
self.program.fromBytecode([])
# No padding to trim.
return
if not self.data:
return
numContours = struct.unpack(">h", self.data[:2])[0]
data = bytearray(self.data)
i = 10
if numContours >= 0:
i += 2 * numContours # endPtsOfContours
nCoordinates = ((data[i - 2] << 8) | data[i - 1]) + 1
instructionLen = (data[i] << 8) | data[i + 1]
if remove_hinting:
# Zero instruction length
data[i] = data[i + 1] = 0
i += 2
if instructionLen:
# Splice it out
data = data[:i] + data[i + instructionLen :]
instructionLen = 0
else:
i += 2 + instructionLen
coordBytes = 0
j = 0
while True:
flag = data[i]
i = i + 1
repeat = 1
if flag & flagRepeat:
repeat = data[i] + 1
i = i + 1
xBytes = yBytes = 0
if flag & flagXShort:
xBytes = 1
elif not (flag & flagXsame):
xBytes = 2
if flag & flagYShort:
yBytes = 1
elif not (flag & flagYsame):
yBytes = 2
coordBytes += (xBytes + yBytes) * repeat
j += repeat
if j >= nCoordinates:
break
assert j == nCoordinates, "bad glyph flags"
i += coordBytes
# Remove padding
data = data[:i]
elif self.isComposite():
more = 1
we_have_instructions = False
while more:
flags = (data[i] << 8) | data[i + 1]
if remove_hinting:
flags &= ~WE_HAVE_INSTRUCTIONS
if flags & WE_HAVE_INSTRUCTIONS:
we_have_instructions = True
data[i + 0] = flags >> 8
data[i + 1] = flags & 0xFF
i += 4
flags = int(flags)
if flags & ARG_1_AND_2_ARE_WORDS:
i += 4
else:
i += 2
if flags & WE_HAVE_A_SCALE:
i += 2
elif flags & WE_HAVE_AN_X_AND_Y_SCALE:
i += 4
elif flags & WE_HAVE_A_TWO_BY_TWO:
i += 8
more = flags & MORE_COMPONENTS
if we_have_instructions:
instructionLen = (data[i] << 8) | data[i + 1]
i += 2 + instructionLen
# Remove padding
data = data[:i]
self.data = data
[docs]
def removeHinting(self):
"""Removes TrueType hinting instructions from the glyph."""
self.trim(remove_hinting=True)
[docs]
def draw(self, pen, glyfTable, offset=0):
"""Draws the glyph using the supplied pen object.
Arguments:
pen: An object conforming to the pen protocol.
glyfTable: A :py:class:`table__g_l_y_f` object, to resolve components.
offset (int): A horizontal offset. If provided, all coordinates are
translated by this offset.
"""
if self.isComposite():
for component in self.components:
glyphName, transform = component.getComponentInfo()
pen.addComponent(glyphName, transform)
return
self.expand(glyfTable)
coordinates, endPts, flags = self.getCoordinates(glyfTable)
if offset:
coordinates = coordinates.copy()
coordinates.translate((offset, 0))
start = 0
maybeInt = lambda v: int(v) if v == int(v) else v
for end in endPts:
end = end + 1
contour = coordinates[start:end]
cFlags = [flagOnCurve & f for f in flags[start:end]]
cuFlags = [flagCubic & f for f in flags[start:end]]
start = end
if 1 not in cFlags:
assert all(cuFlags) or not any(cuFlags)
cubic = all(cuFlags)
if cubic:
count = len(contour)
assert count % 2 == 0, "Odd number of cubic off-curves undefined"
l = contour[-1]
f = contour[0]
p0 = (maybeInt((l[0] + f[0]) * 0.5), maybeInt((l[1] + f[1]) * 0.5))
pen.moveTo(p0)
for i in range(0, count, 2):
p1 = contour[i]
p2 = contour[i + 1]
p4 = contour[i + 2 if i + 2 < count else 0]
p3 = (
maybeInt((p2[0] + p4[0]) * 0.5),
maybeInt((p2[1] + p4[1]) * 0.5),
)
pen.curveTo(p1, p2, p3)
else:
# There is not a single on-curve point on the curve,
# use pen.qCurveTo's special case by specifying None
# as the on-curve point.
contour.append(None)
pen.qCurveTo(*contour)
else:
# Shuffle the points so that the contour is guaranteed
# to *end* in an on-curve point, which we'll use for
# the moveTo.
firstOnCurve = cFlags.index(1) + 1
contour = contour[firstOnCurve:] + contour[:firstOnCurve]
cFlags = cFlags[firstOnCurve:] + cFlags[:firstOnCurve]
cuFlags = cuFlags[firstOnCurve:] + cuFlags[:firstOnCurve]
pen.moveTo(contour[-1])
while contour:
nextOnCurve = cFlags.index(1) + 1
if nextOnCurve == 1:
# Skip a final lineTo(), as it is implied by
# pen.closePath()
if len(contour) > 1:
pen.lineTo(contour[0])
else:
cubicFlags = [f for f in cuFlags[: nextOnCurve - 1]]
assert all(cubicFlags) or not any(cubicFlags)
cubic = any(cubicFlags)
if cubic:
assert all(
cubicFlags
), "Mixed cubic and quadratic segment undefined"
count = nextOnCurve
assert (
count >= 3
), "At least two cubic off-curve points required"
assert (
count - 1
) % 2 == 0, "Odd number of cubic off-curves undefined"
for i in range(0, count - 3, 2):
p1 = contour[i]
p2 = contour[i + 1]
p4 = contour[i + 2]
p3 = (
maybeInt((p2[0] + p4[0]) * 0.5),
maybeInt((p2[1] + p4[1]) * 0.5),
)
lastOnCurve = p3
pen.curveTo(p1, p2, p3)
pen.curveTo(*contour[count - 3 : count])
else:
pen.qCurveTo(*contour[:nextOnCurve])
contour = contour[nextOnCurve:]
cFlags = cFlags[nextOnCurve:]
cuFlags = cuFlags[nextOnCurve:]
pen.closePath()
[docs]
def drawPoints(self, pen, glyfTable, offset=0):
"""Draw the glyph using the supplied pointPen. As opposed to Glyph.draw(),
this will not change the point indices.
"""
if self.isComposite():
for component in self.components:
glyphName, transform = component.getComponentInfo()
pen.addComponent(glyphName, transform)
return
coordinates, endPts, flags = self.getCoordinates(glyfTable)
if offset:
coordinates = coordinates.copy()
coordinates.translate((offset, 0))
start = 0
for end in endPts:
end = end + 1
contour = coordinates[start:end]
cFlags = flags[start:end]
start = end
pen.beginPath()
# Start with the appropriate segment type based on the final segment
if cFlags[-1] & flagOnCurve:
segmentType = "line"
elif cFlags[-1] & flagCubic:
segmentType = "curve"
else:
segmentType = "qcurve"
for i, pt in enumerate(contour):
if cFlags[i] & flagOnCurve:
pen.addPoint(pt, segmentType=segmentType)
segmentType = "line"
else:
pen.addPoint(pt)
segmentType = "curve" if cFlags[i] & flagCubic else "qcurve"
pen.endPath()
def __eq__(self, other):
if type(self) != type(other):
return NotImplemented
return self.__dict__ == other.__dict__
def __ne__(self, other):
result = self.__eq__(other)
return result if result is NotImplemented else not result
# Vector.__round__ uses the built-in (Banker's) `round` but we want
# to use otRound below
_roundv = partial(Vector.__round__, round=otRound)
def _is_mid_point(p0: tuple, p1: tuple, p2: tuple) -> bool:
# True if p1 is in the middle of p0 and p2, either before or after rounding
p0 = Vector(p0)
p1 = Vector(p1)
p2 = Vector(p2)
return ((p0 + p2) * 0.5).isclose(p1) or _roundv(p0) + _roundv(p2) == _roundv(p1) * 2
def dropImpliedOnCurvePoints(*interpolatable_glyphs: Glyph) -> Set[int]:
"""Drop impliable on-curve points from the (simple) glyph or glyphs.
In TrueType glyf outlines, on-curve points can be implied when they are located at
the midpoint of the line connecting two consecutive off-curve points.
If more than one glyphs are passed, these are assumed to be interpolatable masters
of the same glyph impliable, and thus only the on-curve points that are impliable
for all of them will actually be implied.
Composite glyphs or empty glyphs are skipped, only simple glyphs with 1 or more
contours are considered.
The input glyph(s) is/are modified in-place.
Args:
interpolatable_glyphs: The glyph or glyphs to modify in-place.
Returns:
The set of point indices that were dropped if any.
Raises:
ValueError if simple glyphs are not in fact interpolatable because they have
different point flags or number of contours.
Reference:
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM01/Chap1.html
"""
staticAttributes = SimpleNamespace(
numberOfContours=None, flags=None, endPtsOfContours=None
)
drop = None
simple_glyphs = []
for i, glyph in enumerate(interpolatable_glyphs):
if glyph.numberOfContours < 1:
# ignore composite or empty glyphs
continue
for attr in staticAttributes.__dict__:
expected = getattr(staticAttributes, attr)
found = getattr(glyph, attr)
if expected is None:
setattr(staticAttributes, attr, found)
elif expected != found:
raise ValueError(
f"Incompatible {attr} for glyph at master index {i}: "
f"expected {expected}, found {found}"
)
may_drop = set()
start = 0
coords = glyph.coordinates
flags = staticAttributes.flags
endPtsOfContours = staticAttributes.endPtsOfContours
for last in endPtsOfContours:
for i in range(start, last + 1):
if not (flags[i] & flagOnCurve):
continue
prv = i - 1 if i > start else last
nxt = i + 1 if i < last else start
if (flags[prv] & flagOnCurve) or flags[prv] != flags[nxt]:
continue
# we may drop the ith on-curve if halfway between previous/next off-curves
if not _is_mid_point(coords[prv], coords[i], coords[nxt]):
continue
may_drop.add(i)
start = last + 1
# we only want to drop if ALL interpolatable glyphs have the same implied oncurves
if drop is None:
drop = may_drop
else:
drop.intersection_update(may_drop)
simple_glyphs.append(glyph)
if drop:
# Do the actual dropping
flags = staticAttributes.flags
assert flags is not None
newFlags = array.array(
"B", (flags[i] for i in range(len(flags)) if i not in drop)
)
endPts = staticAttributes.endPtsOfContours
assert endPts is not None
newEndPts = []
i = 0
delta = 0
for d in sorted(drop):
while d > endPts[i]:
newEndPts.append(endPts[i] - delta)
i += 1
delta += 1
while i < len(endPts):
newEndPts.append(endPts[i] - delta)
i += 1
for glyph in simple_glyphs:
coords = glyph.coordinates
glyph.coordinates = GlyphCoordinates(
coords[i] for i in range(len(coords)) if i not in drop
)
glyph.flags = newFlags
glyph.endPtsOfContours = newEndPts
return drop if drop is not None else set()
[docs]
class GlyphComponent(object):
"""Represents a component within a composite glyph.
The component is represented internally with four attributes: ``glyphName``,
``x``, ``y`` and ``transform``. If there is no "two-by-two" matrix (i.e
no scaling, reflection, or rotation; only translation), the ``transform``
attribute is not present.
"""
# The above documentation is not *completely* true, but is *true enough* because
# the rare firstPt/lastPt attributes are not totally supported and nobody seems to
# mind - see below.
def __init__(self):
pass
[docs]
def getComponentInfo(self):
"""Return information about the component
This method returns a tuple of two values: the glyph name of the component's
base glyph, and a transformation matrix. As opposed to accessing the attributes
directly, ``getComponentInfo`` always returns a six-element tuple of the
component's transformation matrix, even when the two-by-two ``.transform``
matrix is not present.
"""
# XXX Ignoring self.firstPt & self.lastpt for now: I need to implement
# something equivalent in fontTools.objects.glyph (I'd rather not
# convert it to an absolute offset, since it is valuable information).
# This method will now raise "AttributeError: x" on glyphs that use
# this TT feature.
if hasattr(self, "transform"):
[[xx, xy], [yx, yy]] = self.transform
trans = (xx, xy, yx, yy, self.x, self.y)
else:
trans = (1, 0, 0, 1, self.x, self.y)
return self.glyphName, trans
def decompile(self, data, glyfTable):
flags, glyphID = struct.unpack(">HH", data[:4])
self.flags = int(flags)
glyphID = int(glyphID)
self.glyphName = glyfTable.getGlyphName(int(glyphID))
data = data[4:]
if self.flags & ARG_1_AND_2_ARE_WORDS:
if self.flags & ARGS_ARE_XY_VALUES:
self.x, self.y = struct.unpack(">hh", data[:4])
else:
x, y = struct.unpack(">HH", data[:4])
self.firstPt, self.secondPt = int(x), int(y)
data = data[4:]
else:
if self.flags & ARGS_ARE_XY_VALUES:
self.x, self.y = struct.unpack(">bb", data[:2])
else:
x, y = struct.unpack(">BB", data[:2])
self.firstPt, self.secondPt = int(x), int(y)
data = data[2:]
if self.flags & WE_HAVE_A_SCALE:
(scale,) = struct.unpack(">h", data[:2])
self.transform = [
[fi2fl(scale, 14), 0],
[0, fi2fl(scale, 14)],
] # fixed 2.14
data = data[2:]
elif self.flags & WE_HAVE_AN_X_AND_Y_SCALE:
xscale, yscale = struct.unpack(">hh", data[:4])
self.transform = [
[fi2fl(xscale, 14), 0],
[0, fi2fl(yscale, 14)],
] # fixed 2.14
data = data[4:]
elif self.flags & WE_HAVE_A_TWO_BY_TWO:
(xscale, scale01, scale10, yscale) = struct.unpack(">hhhh", data[:8])
self.transform = [
[fi2fl(xscale, 14), fi2fl(scale01, 14)],
[fi2fl(scale10, 14), fi2fl(yscale, 14)],
] # fixed 2.14
data = data[8:]
more = self.flags & MORE_COMPONENTS
haveInstructions = self.flags & WE_HAVE_INSTRUCTIONS
self.flags = self.flags & (
ROUND_XY_TO_GRID
| USE_MY_METRICS
| SCALED_COMPONENT_OFFSET
| UNSCALED_COMPONENT_OFFSET
| NON_OVERLAPPING
| OVERLAP_COMPOUND
)
return more, haveInstructions, data
def compile(self, more, haveInstructions, glyfTable):
data = b""
# reset all flags we will calculate ourselves
flags = self.flags & (
ROUND_XY_TO_GRID
| USE_MY_METRICS
| SCALED_COMPONENT_OFFSET
| UNSCALED_COMPONENT_OFFSET
| NON_OVERLAPPING
| OVERLAP_COMPOUND
)
if more:
flags = flags | MORE_COMPONENTS
if haveInstructions:
flags = flags | WE_HAVE_INSTRUCTIONS
if hasattr(self, "firstPt"):
if (0 <= self.firstPt <= 255) and (0 <= self.secondPt <= 255):
data = data + struct.pack(">BB", self.firstPt, self.secondPt)
else:
data = data + struct.pack(">HH", self.firstPt, self.secondPt)
flags = flags | ARG_1_AND_2_ARE_WORDS
else:
x = otRound(self.x)
y = otRound(self.y)
flags = flags | ARGS_ARE_XY_VALUES
if (-128 <= x <= 127) and (-128 <= y <= 127):
data = data + struct.pack(">bb", x, y)
else:
data = data + struct.pack(">hh", x, y)
flags = flags | ARG_1_AND_2_ARE_WORDS
if hasattr(self, "transform"):
transform = [[fl2fi(x, 14) for x in row] for row in self.transform]
if transform[0][1] or transform[1][0]:
flags = flags | WE_HAVE_A_TWO_BY_TWO
data = data + struct.pack(
">hhhh",
transform[0][0],
transform[0][1],
transform[1][0],
transform[1][1],
)
elif transform[0][0] != transform[1][1]:
flags = flags | WE_HAVE_AN_X_AND_Y_SCALE
data = data + struct.pack(">hh", transform[0][0], transform[1][1])
else:
flags = flags | WE_HAVE_A_SCALE
data = data + struct.pack(">h", transform[0][0])
glyphID = glyfTable.getGlyphID(self.glyphName)
return struct.pack(">HH", flags, glyphID) + data
def toXML(self, writer, ttFont):
attrs = [("glyphName", self.glyphName)]
if not hasattr(self, "firstPt"):
attrs = attrs + [("x", self.x), ("y", self.y)]
else:
attrs = attrs + [("firstPt", self.firstPt), ("secondPt", self.secondPt)]
if hasattr(self, "transform"):
transform = self.transform
if transform[0][1] or transform[1][0]:
attrs = attrs + [
("scalex", fl2str(transform[0][0], 14)),
("scale01", fl2str(transform[0][1], 14)),
("scale10", fl2str(transform[1][0], 14)),
("scaley", fl2str(transform[1][1], 14)),
]
elif transform[0][0] != transform[1][1]:
attrs = attrs + [
("scalex", fl2str(transform[0][0], 14)),
("scaley", fl2str(transform[1][1], 14)),
]
else:
attrs = attrs + [("scale", fl2str(transform[0][0], 14))]
attrs = attrs + [("flags", hex(self.flags))]
writer.simpletag("component", attrs)
writer.newline()
def fromXML(self, name, attrs, content, ttFont):
self.glyphName = attrs["glyphName"]
if "firstPt" in attrs:
self.firstPt = safeEval(attrs["firstPt"])
self.secondPt = safeEval(attrs["secondPt"])
else:
self.x = safeEval(attrs["x"])
self.y = safeEval(attrs["y"])
if "scale01" in attrs:
scalex = str2fl(attrs["scalex"], 14)
scale01 = str2fl(attrs["scale01"], 14)
scale10 = str2fl(attrs["scale10"], 14)
scaley = str2fl(attrs["scaley"], 14)
self.transform = [[scalex, scale01], [scale10, scaley]]
elif "scalex" in attrs:
scalex = str2fl(attrs["scalex"], 14)
scaley = str2fl(attrs["scaley"], 14)
self.transform = [[scalex, 0], [0, scaley]]
elif "scale" in attrs:
scale = str2fl(attrs["scale"], 14)
self.transform = [[scale, 0], [0, scale]]
self.flags = safeEval(attrs["flags"])
def __eq__(self, other):
if type(self) != type(other):
return NotImplemented
return self.__dict__ == other.__dict__
def __ne__(self, other):
result = self.__eq__(other)
return result if result is NotImplemented else not result
[docs]
class GlyphCoordinates(object):
"""A list of glyph coordinates.
Unlike an ordinary list, this is a numpy-like matrix object which supports
matrix addition, scalar multiplication and other operations described below.
"""
def __init__(self, iterable=[]):
self._a = array.array("d")
self.extend(iterable)
@property
def array(self):
"""Returns the underlying array of coordinates"""
return self._a
[docs]
@staticmethod
def zeros(count):
"""Creates a new ``GlyphCoordinates`` object with all coordinates set to (0,0)"""
g = GlyphCoordinates()
g._a.frombytes(bytes(count * 2 * g._a.itemsize))
return g
[docs]
def copy(self):
"""Creates a new ``GlyphCoordinates`` object which is a copy of the current one."""
c = GlyphCoordinates()
c._a.extend(self._a)
return c
def __len__(self):
"""Returns the number of coordinates in the array."""
return len(self._a) // 2
def __getitem__(self, k):
"""Returns a two element tuple (x,y)"""
a = self._a
if isinstance(k, slice):
indices = range(*k.indices(len(self)))
# Instead of calling ourselves recursively, duplicate code; faster
ret = []
for k in indices:
x = a[2 * k]
y = a[2 * k + 1]
ret.append(
(int(x) if x.is_integer() else x, int(y) if y.is_integer() else y)
)
return ret
x = a[2 * k]
y = a[2 * k + 1]
return (int(x) if x.is_integer() else x, int(y) if y.is_integer() else y)
def __setitem__(self, k, v):
"""Sets a point's coordinates to a two element tuple (x,y)"""
if isinstance(k, slice):
indices = range(*k.indices(len(self)))
# XXX This only works if len(v) == len(indices)
for j, i in enumerate(indices):
self[i] = v[j]
return
self._a[2 * k], self._a[2 * k + 1] = v
def __delitem__(self, i):
"""Removes a point from the list"""
i = (2 * i) % len(self._a)
del self._a[i]
del self._a[i]
def __repr__(self):
return "GlyphCoordinates([" + ",".join(str(c) for c in self) + "])"
def append(self, p):
self._a.extend(tuple(p))
def extend(self, iterable):
for p in iterable:
self._a.extend(p)
def toInt(self, *, round=otRound):
if round is noRound:
return
a = self._a
for i in range(len(a)):
a[i] = round(a[i])
def calcBounds(self):
a = self._a
if not a:
return 0, 0, 0, 0
xs = a[0::2]
ys = a[1::2]
return min(xs), min(ys), max(xs), max(ys)
def calcIntBounds(self, round=otRound):
return tuple(round(v) for v in self.calcBounds())
def relativeToAbsolute(self):
a = self._a
x, y = 0, 0
for i in range(0, len(a), 2):
a[i] = x = a[i] + x
a[i + 1] = y = a[i + 1] + y
def absoluteToRelative(self):
a = self._a
x, y = 0, 0
for i in range(0, len(a), 2):
nx = a[i]
ny = a[i + 1]
a[i] = nx - x
a[i + 1] = ny - y
x = nx
y = ny
[docs]
def translate(self, p):
"""
>>> GlyphCoordinates([(1,2)]).translate((.5,0))
"""
x, y = p
if x == 0 and y == 0:
return
a = self._a
for i in range(0, len(a), 2):
a[i] += x
a[i + 1] += y
[docs]
def scale(self, p):
"""
>>> GlyphCoordinates([(1,2)]).scale((.5,0))
"""
x, y = p
if x == 1 and y == 1:
return
a = self._a
for i in range(0, len(a), 2):
a[i] *= x
a[i + 1] *= y
def __eq__(self, other):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g2 = GlyphCoordinates([(1.0,2)])
>>> g3 = GlyphCoordinates([(1.5,2)])
>>> g == g2
True
>>> g == g3
False
>>> g2 == g3
False
"""
if type(self) != type(other):
return NotImplemented
return self._a == other._a
def __ne__(self, other):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g2 = GlyphCoordinates([(1.0,2)])
>>> g3 = GlyphCoordinates([(1.5,2)])
>>> g != g2
False
>>> g != g3
True
>>> g2 != g3
True
"""
result = self.__eq__(other)
return result if result is NotImplemented else not result
# Math operations
def __pos__(self):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g
GlyphCoordinates([(1, 2)])
>>> g2 = +g
>>> g2
GlyphCoordinates([(1, 2)])
>>> g2.translate((1,0))
>>> g2
GlyphCoordinates([(2, 2)])
>>> g
GlyphCoordinates([(1, 2)])
"""
return self.copy()
def __neg__(self):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g
GlyphCoordinates([(1, 2)])
>>> g2 = -g
>>> g2
GlyphCoordinates([(-1, -2)])
>>> g
GlyphCoordinates([(1, 2)])
"""
r = self.copy()
a = r._a
for i in range(len(a)):
a[i] = -a[i]
return r
def __round__(self, *, round=otRound):
r = self.copy()
r.toInt(round=round)
return r
def __add__(self, other):
return self.copy().__iadd__(other)
def __sub__(self, other):
return self.copy().__isub__(other)
def __mul__(self, other):
return self.copy().__imul__(other)
def __truediv__(self, other):
return self.copy().__itruediv__(other)
__radd__ = __add__
__rmul__ = __mul__
def __rsub__(self, other):
return other + (-self)
def __iadd__(self, other):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g += (.5,0)
>>> g
GlyphCoordinates([(1.5, 2)])
>>> g2 = GlyphCoordinates([(3,4)])
>>> g += g2
>>> g
GlyphCoordinates([(4.5, 6)])
"""
if isinstance(other, tuple):
assert len(other) == 2
self.translate(other)
return self
if isinstance(other, GlyphCoordinates):
other = other._a
a = self._a
assert len(a) == len(other)
for i in range(len(a)):
a[i] += other[i]
return self
return NotImplemented
def __isub__(self, other):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g -= (.5,0)
>>> g
GlyphCoordinates([(0.5, 2)])
>>> g2 = GlyphCoordinates([(3,4)])
>>> g -= g2
>>> g
GlyphCoordinates([(-2.5, -2)])
"""
if isinstance(other, tuple):
assert len(other) == 2
self.translate((-other[0], -other[1]))
return self
if isinstance(other, GlyphCoordinates):
other = other._a
a = self._a
assert len(a) == len(other)
for i in range(len(a)):
a[i] -= other[i]
return self
return NotImplemented
def __imul__(self, other):
"""
>>> g = GlyphCoordinates([(1,2)])
>>> g *= (2,.5)
>>> g *= 2
>>> g
GlyphCoordinates([(4, 2)])
>>> g = GlyphCoordinates([(1,2)])
>>> g *= 2
>>> g
GlyphCoordinates([(2, 4)])
"""
if isinstance(other, tuple):
assert len(other) == 2
self.scale(other)
return self
if isinstance(other, Number):
if other == 1:
return self
a = self._a
for i in range(len(a)):
a[i] *= other
return self
return NotImplemented
def __itruediv__(self, other):
"""
>>> g = GlyphCoordinates([(1,3)])
>>> g /= (.5,1.5)
>>> g /= 2
>>> g
GlyphCoordinates([(1, 1)])
"""
if isinstance(other, Number):
other = (other, other)
if isinstance(other, tuple):
if other == (1, 1):
return self
assert len(other) == 2
self.scale((1.0 / other[0], 1.0 / other[1]))
return self
return NotImplemented
def __bool__(self):
"""
>>> g = GlyphCoordinates([])
>>> bool(g)
False
>>> g = GlyphCoordinates([(0,0), (0.,0)])
>>> bool(g)
True
>>> g = GlyphCoordinates([(0,0), (1,0)])
>>> bool(g)
True
>>> g = GlyphCoordinates([(0,.5), (0,0)])
>>> bool(g)
True
"""
return bool(self._a)
__nonzero__ = __bool__
if __name__ == "__main__":
import doctest, sys
sys.exit(doctest.testmod().failed)