Source code for fontTools.misc.bezierTools

# -*- coding: utf-8 -*-
"""fontTools.misc.bezierTools.py -- tools for working with Bezier path segments.
"""

from fontTools.misc.arrayTools import calcBounds, sectRect, rectArea
from fontTools.misc.transform import Identity
import math
from collections import namedtuple

try:
    import cython

    COMPILED = cython.compiled
except (AttributeError, ImportError):
    # if cython not installed, use mock module with no-op decorators and types
    from fontTools.misc import cython

    COMPILED = False


Intersection = namedtuple("Intersection", ["pt", "t1", "t2"])


__all__ = [
    "approximateCubicArcLength",
    "approximateCubicArcLengthC",
    "approximateQuadraticArcLength",
    "approximateQuadraticArcLengthC",
    "calcCubicArcLength",
    "calcCubicArcLengthC",
    "calcQuadraticArcLength",
    "calcQuadraticArcLengthC",
    "calcCubicBounds",
    "calcQuadraticBounds",
    "splitLine",
    "splitQuadratic",
    "splitCubic",
    "splitQuadraticAtT",
    "splitCubicAtT",
    "splitCubicAtTC",
    "splitCubicIntoTwoAtTC",
    "solveQuadratic",
    "solveCubic",
    "quadraticPointAtT",
    "cubicPointAtT",
    "cubicPointAtTC",
    "linePointAtT",
    "segmentPointAtT",
    "lineLineIntersections",
    "curveLineIntersections",
    "curveCurveIntersections",
    "segmentSegmentIntersections",
]


[docs] def calcCubicArcLength(pt1, pt2, pt3, pt4, tolerance=0.005): """Calculates the arc length for a cubic Bezier segment. Whereas :func:`approximateCubicArcLength` approximates the length, this function calculates it by "measuring", recursively dividing the curve until the divided segments are shorter than ``tolerance``. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. tolerance: Controls the precision of the calcuation. Returns: Arc length value. """ return calcCubicArcLengthC( complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4), tolerance )
def _split_cubic_into_two(p0, p1, p2, p3): mid = (p0 + 3 * (p1 + p2) + p3) * 0.125 deriv3 = (p3 + p2 - p1 - p0) * 0.125 return ( (p0, (p0 + p1) * 0.5, mid - deriv3, mid), (mid, mid + deriv3, (p2 + p3) * 0.5, p3), ) @cython.returns(cython.double) @cython.locals( p0=cython.complex, p1=cython.complex, p2=cython.complex, p3=cython.complex, ) @cython.locals(mult=cython.double, arch=cython.double, box=cython.double) def _calcCubicArcLengthCRecurse(mult, p0, p1, p2, p3): arch = abs(p0 - p3) box = abs(p0 - p1) + abs(p1 - p2) + abs(p2 - p3) if arch * mult >= box: return (arch + box) * 0.5 else: one, two = _split_cubic_into_two(p0, p1, p2, p3) return _calcCubicArcLengthCRecurse(mult, *one) + _calcCubicArcLengthCRecurse( mult, *two )
[docs] @cython.returns(cython.double) @cython.locals( pt1=cython.complex, pt2=cython.complex, pt3=cython.complex, pt4=cython.complex, ) @cython.locals( tolerance=cython.double, mult=cython.double, ) def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005): """Calculates the arc length for a cubic Bezier segment. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers. tolerance: Controls the precision of the calcuation. Returns: Arc length value. """ mult = 1.0 + 1.5 * tolerance # The 1.5 is a empirical hack; no math return _calcCubicArcLengthCRecurse(mult, pt1, pt2, pt3, pt4)
epsilonDigits = 6 epsilon = 1e-10 @cython.cfunc @cython.inline @cython.returns(cython.double) @cython.locals(v1=cython.complex, v2=cython.complex) def _dot(v1, v2): return (v1 * v2.conjugate()).real @cython.cfunc @cython.inline @cython.returns(cython.double) @cython.locals(x=cython.double) def _intSecAtan(x): # In : sympy.integrate(sp.sec(sp.atan(x))) # Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2 return x * math.sqrt(x**2 + 1) / 2 + math.asinh(x) / 2
[docs] def calcQuadraticArcLength(pt1, pt2, pt3): """Calculates the arc length for a quadratic Bezier segment. Args: pt1: Start point of the Bezier as 2D tuple. pt2: Handle point of the Bezier as 2D tuple. pt3: End point of the Bezier as 2D tuple. Returns: Arc length value. Example:: >>> calcQuadraticArcLength((0, 0), (0, 0), (0, 0)) # empty segment 0.0 >>> calcQuadraticArcLength((0, 0), (50, 0), (80, 0)) # collinear points 80.0 >>> calcQuadraticArcLength((0, 0), (0, 50), (0, 80)) # collinear points vertical 80.0 >>> calcQuadraticArcLength((0, 0), (50, 20), (100, 40)) # collinear points 107.70329614269008 >>> calcQuadraticArcLength((0, 0), (0, 100), (100, 0)) 154.02976155645263 >>> calcQuadraticArcLength((0, 0), (0, 50), (100, 0)) 120.21581243984076 >>> calcQuadraticArcLength((0, 0), (50, -10), (80, 50)) 102.53273816445825 >>> calcQuadraticArcLength((0, 0), (40, 0), (-40, 0)) # collinear points, control point outside 66.66666666666667 >>> calcQuadraticArcLength((0, 0), (40, 0), (0, 0)) # collinear points, looping back 40.0 """ return calcQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3))
[docs] @cython.returns(cython.double) @cython.locals( pt1=cython.complex, pt2=cython.complex, pt3=cython.complex, d0=cython.complex, d1=cython.complex, d=cython.complex, n=cython.complex, ) @cython.locals( scale=cython.double, origDist=cython.double, a=cython.double, b=cython.double, x0=cython.double, x1=cython.double, Len=cython.double, ) def calcQuadraticArcLengthC(pt1, pt2, pt3): """Calculates the arc length for a quadratic Bezier segment. Args: pt1: Start point of the Bezier as a complex number. pt2: Handle point of the Bezier as a complex number. pt3: End point of the Bezier as a complex number. Returns: Arc length value. """ # Analytical solution to the length of a quadratic bezier. # Documentation: https://github.com/fonttools/fonttools/issues/3055 d0 = pt2 - pt1 d1 = pt3 - pt2 d = d1 - d0 n = d * 1j scale = abs(n) if scale == 0.0: return abs(pt3 - pt1) origDist = _dot(n, d0) if abs(origDist) < epsilon: if _dot(d0, d1) >= 0: return abs(pt3 - pt1) a, b = abs(d0), abs(d1) return (a * a + b * b) / (a + b) x0 = _dot(d, d0) / origDist x1 = _dot(d, d1) / origDist Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0))) return Len
[docs] def approximateQuadraticArcLength(pt1, pt2, pt3): """Calculates the arc length for a quadratic Bezier segment. Uses Gauss-Legendre quadrature for a branch-free approximation. See :func:`calcQuadraticArcLength` for a slower but more accurate result. Args: pt1: Start point of the Bezier as 2D tuple. pt2: Handle point of the Bezier as 2D tuple. pt3: End point of the Bezier as 2D tuple. Returns: Approximate arc length value. """ return approximateQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3))
[docs] @cython.returns(cython.double) @cython.locals( pt1=cython.complex, pt2=cython.complex, pt3=cython.complex, ) @cython.locals( v0=cython.double, v1=cython.double, v2=cython.double, ) def approximateQuadraticArcLengthC(pt1, pt2, pt3): """Calculates the arc length for a quadratic Bezier segment. Uses Gauss-Legendre quadrature for a branch-free approximation. See :func:`calcQuadraticArcLength` for a slower but more accurate result. Args: pt1: Start point of the Bezier as a complex number. pt2: Handle point of the Bezier as a complex number. pt3: End point of the Bezier as a complex number. Returns: Approximate arc length value. """ # This, essentially, approximates the length-of-derivative function # to be integrated with the best-matching fifth-degree polynomial # approximation of it. # # https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature # abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2), # weighted 5/18, 8/18, 5/18 respectively. v0 = abs( -0.492943519233745 * pt1 + 0.430331482911935 * pt2 + 0.0626120363218102 * pt3 ) v1 = abs(pt3 - pt1) * 0.4444444444444444 v2 = abs( -0.0626120363218102 * pt1 - 0.430331482911935 * pt2 + 0.492943519233745 * pt3 ) return v0 + v1 + v2
[docs] def calcQuadraticBounds(pt1, pt2, pt3): """Calculates the bounding rectangle for a quadratic Bezier segment. Args: pt1: Start point of the Bezier as a 2D tuple. pt2: Handle point of the Bezier as a 2D tuple. pt3: End point of the Bezier as a 2D tuple. Returns: A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``. Example:: >>> calcQuadraticBounds((0, 0), (50, 100), (100, 0)) (0, 0, 100, 50.0) >>> calcQuadraticBounds((0, 0), (100, 0), (100, 100)) (0.0, 0.0, 100, 100) """ (ax, ay), (bx, by), (cx, cy) = calcQuadraticParameters(pt1, pt2, pt3) ax2 = ax * 2.0 ay2 = ay * 2.0 roots = [] if ax2 != 0: roots.append(-bx / ax2) if ay2 != 0: roots.append(-by / ay2) points = [ (ax * t * t + bx * t + cx, ay * t * t + by * t + cy) for t in roots if 0 <= t < 1 ] + [pt1, pt3] return calcBounds(points)
[docs] def approximateCubicArcLength(pt1, pt2, pt3, pt4): """Approximates the arc length for a cubic Bezier segment. Uses Gauss-Lobatto quadrature with n=5 points to approximate arc length. See :func:`calcCubicArcLength` for a slower but more accurate result. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. Returns: Arc length value. Example:: >>> approximateCubicArcLength((0, 0), (25, 100), (75, 100), (100, 0)) 190.04332968932817 >>> approximateCubicArcLength((0, 0), (50, 0), (100, 50), (100, 100)) 154.8852074945903 >>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (150, 0)) # line; exact result should be 150. 149.99999999999991 >>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (-50, 0)) # cusp; exact result should be 150. 136.9267662156362 >>> approximateCubicArcLength((0, 0), (50, 0), (100, -50), (-50, 0)) # cusp 154.80848416537057 """ return approximateCubicArcLengthC( complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4) )
[docs] @cython.returns(cython.double) @cython.locals( pt1=cython.complex, pt2=cython.complex, pt3=cython.complex, pt4=cython.complex, ) @cython.locals( v0=cython.double, v1=cython.double, v2=cython.double, v3=cython.double, v4=cython.double, ) def approximateCubicArcLengthC(pt1, pt2, pt3, pt4): """Approximates the arc length for a cubic Bezier segment. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers. Returns: Arc length value. """ # This, essentially, approximates the length-of-derivative function # to be integrated with the best-matching seventh-degree polynomial # approximation of it. # # https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules # abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1), # weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively. v0 = abs(pt2 - pt1) * 0.15 v1 = abs( -0.558983582205757 * pt1 + 0.325650248872424 * pt2 + 0.208983582205757 * pt3 + 0.024349751127576 * pt4 ) v2 = abs(pt4 - pt1 + pt3 - pt2) * 0.26666666666666666 v3 = abs( -0.024349751127576 * pt1 - 0.208983582205757 * pt2 - 0.325650248872424 * pt3 + 0.558983582205757 * pt4 ) v4 = abs(pt4 - pt3) * 0.15 return v0 + v1 + v2 + v3 + v4
[docs] def calcCubicBounds(pt1, pt2, pt3, pt4): """Calculates the bounding rectangle for a quadratic Bezier segment. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. Returns: A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``. Example:: >>> calcCubicBounds((0, 0), (25, 100), (75, 100), (100, 0)) (0, 0, 100, 75.0) >>> calcCubicBounds((0, 0), (50, 0), (100, 50), (100, 100)) (0.0, 0.0, 100, 100) >>> print("%f %f %f %f" % calcCubicBounds((50, 0), (0, 100), (100, 100), (50, 0))) 35.566243 0.000000 64.433757 75.000000 """ (ax, ay), (bx, by), (cx, cy), (dx, dy) = calcCubicParameters(pt1, pt2, pt3, pt4) # calc first derivative ax3 = ax * 3.0 ay3 = ay * 3.0 bx2 = bx * 2.0 by2 = by * 2.0 xRoots = [t for t in solveQuadratic(ax3, bx2, cx) if 0 <= t < 1] yRoots = [t for t in solveQuadratic(ay3, by2, cy) if 0 <= t < 1] roots = xRoots + yRoots points = [ ( ax * t * t * t + bx * t * t + cx * t + dx, ay * t * t * t + by * t * t + cy * t + dy, ) for t in roots ] + [pt1, pt4] return calcBounds(points)
[docs] def splitLine(pt1, pt2, where, isHorizontal): """Split a line at a given coordinate. Args: pt1: Start point of line as 2D tuple. pt2: End point of line as 2D tuple. where: Position at which to split the line. isHorizontal: Direction of the ray splitting the line. If true, ``where`` is interpreted as a Y coordinate; if false, then ``where`` is interpreted as an X coordinate. Returns: A list of two line segments (each line segment being two 2D tuples) if the line was successfully split, or a list containing the original line. Example:: >>> printSegments(splitLine((0, 0), (100, 100), 50, True)) ((0, 0), (50, 50)) ((50, 50), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 100, True)) ((0, 0), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 0, True)) ((0, 0), (0, 0)) ((0, 0), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 0, False)) ((0, 0), (0, 0)) ((0, 0), (100, 100)) >>> printSegments(splitLine((100, 0), (0, 0), 50, False)) ((100, 0), (50, 0)) ((50, 0), (0, 0)) >>> printSegments(splitLine((0, 100), (0, 0), 50, True)) ((0, 100), (0, 50)) ((0, 50), (0, 0)) """ pt1x, pt1y = pt1 pt2x, pt2y = pt2 ax = pt2x - pt1x ay = pt2y - pt1y bx = pt1x by = pt1y a = (ax, ay)[isHorizontal] if a == 0: return [(pt1, pt2)] t = (where - (bx, by)[isHorizontal]) / a if 0 <= t < 1: midPt = ax * t + bx, ay * t + by return [(pt1, midPt), (midPt, pt2)] else: return [(pt1, pt2)]
[docs] def splitQuadratic(pt1, pt2, pt3, where, isHorizontal): """Split a quadratic Bezier curve at a given coordinate. Args: pt1,pt2,pt3: Control points of the Bezier as 2D tuples. where: Position at which to split the curve. isHorizontal: Direction of the ray splitting the curve. If true, ``where`` is interpreted as a Y coordinate; if false, then ``where`` is interpreted as an X coordinate. Returns: A list of two curve segments (each curve segment being three 2D tuples) if the curve was successfully split, or a list containing the original curve. Example:: >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 150, False)) ((0, 0), (50, 100), (100, 0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, False)) ((0, 0), (25, 50), (50, 50)) ((50, 50), (75, 50), (100, 0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, False)) ((0, 0), (12.5, 25), (25, 37.5)) ((25, 37.5), (62.5, 75), (100, 0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, True)) ((0, 0), (7.32233, 14.6447), (14.6447, 25)) ((14.6447, 25), (50, 75), (85.3553, 25)) ((85.3553, 25), (92.6777, 14.6447), (100, -7.10543e-15)) >>> # XXX I'm not at all sure if the following behavior is desirable: >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, True)) ((0, 0), (25, 50), (50, 50)) ((50, 50), (50, 50), (50, 50)) ((50, 50), (75, 50), (100, 0)) """ a, b, c = calcQuadraticParameters(pt1, pt2, pt3) solutions = solveQuadratic( a[isHorizontal], b[isHorizontal], c[isHorizontal] - where ) solutions = sorted(t for t in solutions if 0 <= t < 1) if not solutions: return [(pt1, pt2, pt3)] return _splitQuadraticAtT(a, b, c, *solutions)
[docs] def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal): """Split a cubic Bezier curve at a given coordinate. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. where: Position at which to split the curve. isHorizontal: Direction of the ray splitting the curve. If true, ``where`` is interpreted as a Y coordinate; if false, then ``where`` is interpreted as an X coordinate. Returns: A list of two curve segments (each curve segment being four 2D tuples) if the curve was successfully split, or a list containing the original curve. Example:: >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 150, False)) ((0, 0), (25, 100), (75, 100), (100, 0)) >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 50, False)) ((0, 0), (12.5, 50), (31.25, 75), (50, 75)) ((50, 75), (68.75, 75), (87.5, 50), (100, 0)) >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 25, True)) ((0, 0), (2.29379, 9.17517), (4.79804, 17.5085), (7.47414, 25)) ((7.47414, 25), (31.2886, 91.6667), (68.7114, 91.6667), (92.5259, 25)) ((92.5259, 25), (95.202, 17.5085), (97.7062, 9.17517), (100, 1.77636e-15)) """ a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) solutions = solveCubic( a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - where ) solutions = sorted(t for t in solutions if 0 <= t < 1) if not solutions: return [(pt1, pt2, pt3, pt4)] return _splitCubicAtT(a, b, c, d, *solutions)
[docs] def splitQuadraticAtT(pt1, pt2, pt3, *ts): """Split a quadratic Bezier curve at one or more values of t. Args: pt1,pt2,pt3: Control points of the Bezier as 2D tuples. *ts: Positions at which to split the curve. Returns: A list of curve segments (each curve segment being three 2D tuples). Examples:: >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5)) ((0, 0), (25, 50), (50, 50)) ((50, 50), (75, 50), (100, 0)) >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5, 0.75)) ((0, 0), (25, 50), (50, 50)) ((50, 50), (62.5, 50), (75, 37.5)) ((75, 37.5), (87.5, 25), (100, 0)) """ a, b, c = calcQuadraticParameters(pt1, pt2, pt3) return _splitQuadraticAtT(a, b, c, *ts)
[docs] def splitCubicAtT(pt1, pt2, pt3, pt4, *ts): """Split a cubic Bezier curve at one or more values of t. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. *ts: Positions at which to split the curve. Returns: A list of curve segments (each curve segment being four 2D tuples). Examples:: >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5)) ((0, 0), (12.5, 50), (31.25, 75), (50, 75)) ((50, 75), (68.75, 75), (87.5, 50), (100, 0)) >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5, 0.75)) ((0, 0), (12.5, 50), (31.25, 75), (50, 75)) ((50, 75), (59.375, 75), (68.75, 68.75), (77.3438, 56.25)) ((77.3438, 56.25), (85.9375, 43.75), (93.75, 25), (100, 0)) """ a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) return _splitCubicAtT(a, b, c, d, *ts)
[docs] @cython.locals( pt1=cython.complex, pt2=cython.complex, pt3=cython.complex, pt4=cython.complex, a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex, ) def splitCubicAtTC(pt1, pt2, pt3, pt4, *ts): """Split a cubic Bezier curve at one or more values of t. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers.. *ts: Positions at which to split the curve. Yields: Curve segments (each curve segment being four complex numbers). """ a, b, c, d = calcCubicParametersC(pt1, pt2, pt3, pt4) yield from _splitCubicAtTC(a, b, c, d, *ts)
[docs] @cython.returns(cython.complex) @cython.locals( t=cython.double, pt1=cython.complex, pt2=cython.complex, pt3=cython.complex, pt4=cython.complex, pointAtT=cython.complex, off1=cython.complex, off2=cython.complex, ) @cython.locals( t2=cython.double, _1_t=cython.double, _1_t_2=cython.double, _2_t_1_t=cython.double ) def splitCubicIntoTwoAtTC(pt1, pt2, pt3, pt4, t): """Split a cubic Bezier curve at t. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers. t: Position at which to split the curve. Returns: A tuple of two curve segments (each curve segment being four complex numbers). """ t2 = t * t _1_t = 1 - t _1_t_2 = _1_t * _1_t _2_t_1_t = 2 * t * _1_t pointAtT = ( _1_t_2 * _1_t * pt1 + 3 * (_1_t_2 * t * pt2 + _1_t * t2 * pt3) + t2 * t * pt4 ) off1 = _1_t_2 * pt1 + _2_t_1_t * pt2 + t2 * pt3 off2 = _1_t_2 * pt2 + _2_t_1_t * pt3 + t2 * pt4 pt2 = pt1 + (pt2 - pt1) * t pt3 = pt4 + (pt3 - pt4) * _1_t return ((pt1, pt2, off1, pointAtT), (pointAtT, off2, pt3, pt4))
def _splitQuadraticAtT(a, b, c, *ts): ts = list(ts) segments = [] ts.insert(0, 0.0) ts.append(1.0) ax, ay = a bx, by = b cx, cy = c for i in range(len(ts) - 1): t1 = ts[i] t2 = ts[i + 1] delta = t2 - t1 # calc new a, b and c delta_2 = delta * delta a1x = ax * delta_2 a1y = ay * delta_2 b1x = (2 * ax * t1 + bx) * delta b1y = (2 * ay * t1 + by) * delta t1_2 = t1 * t1 c1x = ax * t1_2 + bx * t1 + cx c1y = ay * t1_2 + by * t1 + cy pt1, pt2, pt3 = calcQuadraticPoints((a1x, a1y), (b1x, b1y), (c1x, c1y)) segments.append((pt1, pt2, pt3)) return segments def _splitCubicAtT(a, b, c, d, *ts): ts = list(ts) ts.insert(0, 0.0) ts.append(1.0) segments = [] ax, ay = a bx, by = b cx, cy = c dx, dy = d for i in range(len(ts) - 1): t1 = ts[i] t2 = ts[i + 1] delta = t2 - t1 delta_2 = delta * delta delta_3 = delta * delta_2 t1_2 = t1 * t1 t1_3 = t1 * t1_2 # calc new a, b, c and d a1x = ax * delta_3 a1y = ay * delta_3 b1x = (3 * ax * t1 + bx) * delta_2 b1y = (3 * ay * t1 + by) * delta_2 c1x = (2 * bx * t1 + cx + 3 * ax * t1_2) * delta c1y = (2 * by * t1 + cy + 3 * ay * t1_2) * delta d1x = ax * t1_3 + bx * t1_2 + cx * t1 + dx d1y = ay * t1_3 + by * t1_2 + cy * t1 + dy pt1, pt2, pt3, pt4 = calcCubicPoints( (a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y) ) segments.append((pt1, pt2, pt3, pt4)) return segments @cython.locals( a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex, t1=cython.double, t2=cython.double, delta=cython.double, delta_2=cython.double, delta_3=cython.double, a1=cython.complex, b1=cython.complex, c1=cython.complex, d1=cython.complex, ) def _splitCubicAtTC(a, b, c, d, *ts): ts = list(ts) ts.insert(0, 0.0) ts.append(1.0) for i in range(len(ts) - 1): t1 = ts[i] t2 = ts[i + 1] delta = t2 - t1 delta_2 = delta * delta delta_3 = delta * delta_2 t1_2 = t1 * t1 t1_3 = t1 * t1_2 # calc new a, b, c and d a1 = a * delta_3 b1 = (3 * a * t1 + b) * delta_2 c1 = (2 * b * t1 + c + 3 * a * t1_2) * delta d1 = a * t1_3 + b * t1_2 + c * t1 + d pt1, pt2, pt3, pt4 = calcCubicPointsC(a1, b1, c1, d1) yield (pt1, pt2, pt3, pt4) # # Equation solvers. # from math import sqrt, acos, cos, pi
[docs] def solveQuadratic(a, b, c, sqrt=sqrt): """Solve a quadratic equation. Solves *a*x*x + b*x + c = 0* where a, b and c are real. Args: a: coefficient of *x²* b: coefficient of *x* c: constant term Returns: A list of roots. Note that the returned list is neither guaranteed to be sorted nor to contain unique values! """ if abs(a) < epsilon: if abs(b) < epsilon: # We have a non-equation; therefore, we have no valid solution roots = [] else: # We have a linear equation with 1 root. roots = [-c / b] else: # We have a true quadratic equation. Apply the quadratic formula to find two roots. DD = b * b - 4.0 * a * c if DD >= 0.0: rDD = sqrt(DD) roots = [(-b + rDD) / 2.0 / a, (-b - rDD) / 2.0 / a] else: # complex roots, ignore roots = [] return roots
[docs] def solveCubic(a, b, c, d): """Solve a cubic equation. Solves *a*x*x*x + b*x*x + c*x + d = 0* where a, b, c and d are real. Args: a: coefficient of *x³* b: coefficient of *x²* c: coefficient of *x* d: constant term Returns: A list of roots. Note that the returned list is neither guaranteed to be sorted nor to contain unique values! Examples:: >>> solveCubic(1, 1, -6, 0) [-3.0, -0.0, 2.0] >>> solveCubic(-10.0, -9.0, 48.0, -29.0) [-2.9, 1.0, 1.0] >>> solveCubic(-9.875, -9.0, 47.625, -28.75) [-2.911392, 1.0, 1.0] >>> solveCubic(1.0, -4.5, 6.75, -3.375) [1.5, 1.5, 1.5] >>> solveCubic(-12.0, 18.0, -9.0, 1.50023651123) [0.5, 0.5, 0.5] >>> solveCubic( ... 9.0, 0.0, 0.0, -7.62939453125e-05 ... ) == [-0.0, -0.0, -0.0] True """ # # adapted from: # CUBIC.C - Solve a cubic polynomial # public domain by Ross Cottrell # found at: http://www.strangecreations.com/library/snippets/Cubic.C # if abs(a) < epsilon: # don't just test for zero; for very small values of 'a' solveCubic() # returns unreliable results, so we fall back to quad. return solveQuadratic(b, c, d) a = float(a) a1 = b / a a2 = c / a a3 = d / a Q = (a1 * a1 - 3.0 * a2) / 9.0 R = (2.0 * a1 * a1 * a1 - 9.0 * a1 * a2 + 27.0 * a3) / 54.0 R2 = R * R Q3 = Q * Q * Q R2 = 0 if R2 < epsilon else R2 Q3 = 0 if abs(Q3) < epsilon else Q3 R2_Q3 = R2 - Q3 if R2 == 0.0 and Q3 == 0.0: x = round(-a1 / 3.0, epsilonDigits) return [x, x, x] elif R2_Q3 <= epsilon * 0.5: # The epsilon * .5 above ensures that Q3 is not zero. theta = acos(max(min(R / sqrt(Q3), 1.0), -1.0)) rQ2 = -2.0 * sqrt(Q) a1_3 = a1 / 3.0 x0 = rQ2 * cos(theta / 3.0) - a1_3 x1 = rQ2 * cos((theta + 2.0 * pi) / 3.0) - a1_3 x2 = rQ2 * cos((theta + 4.0 * pi) / 3.0) - a1_3 x0, x1, x2 = sorted([x0, x1, x2]) # Merge roots that are close-enough if x1 - x0 < epsilon and x2 - x1 < epsilon: x0 = x1 = x2 = round((x0 + x1 + x2) / 3.0, epsilonDigits) elif x1 - x0 < epsilon: x0 = x1 = round((x0 + x1) / 2.0, epsilonDigits) x2 = round(x2, epsilonDigits) elif x2 - x1 < epsilon: x0 = round(x0, epsilonDigits) x1 = x2 = round((x1 + x2) / 2.0, epsilonDigits) else: x0 = round(x0, epsilonDigits) x1 = round(x1, epsilonDigits) x2 = round(x2, epsilonDigits) return [x0, x1, x2] else: x = pow(sqrt(R2_Q3) + abs(R), 1 / 3.0) x = x + Q / x if R >= 0.0: x = -x x = round(x - a1 / 3.0, epsilonDigits) return [x]
# # Conversion routines for points to parameters and vice versa # def calcQuadraticParameters(pt1, pt2, pt3): x2, y2 = pt2 x3, y3 = pt3 cx, cy = pt1 bx = (x2 - cx) * 2.0 by = (y2 - cy) * 2.0 ax = x3 - cx - bx ay = y3 - cy - by return (ax, ay), (bx, by), (cx, cy) def calcCubicParameters(pt1, pt2, pt3, pt4): x2, y2 = pt2 x3, y3 = pt3 x4, y4 = pt4 dx, dy = pt1 cx = (x2 - dx) * 3.0 cy = (y2 - dy) * 3.0 bx = (x3 - x2) * 3.0 - cx by = (y3 - y2) * 3.0 - cy ax = x4 - dx - cx - bx ay = y4 - dy - cy - by return (ax, ay), (bx, by), (cx, cy), (dx, dy) @cython.cfunc @cython.inline @cython.locals( pt1=cython.complex, pt2=cython.complex, pt3=cython.complex, pt4=cython.complex, a=cython.complex, b=cython.complex, c=cython.complex, ) def calcCubicParametersC(pt1, pt2, pt3, pt4): c = (pt2 - pt1) * 3.0 b = (pt3 - pt2) * 3.0 - c a = pt4 - pt1 - c - b return (a, b, c, pt1) def calcQuadraticPoints(a, b, c): ax, ay = a bx, by = b cx, cy = c x1 = cx y1 = cy x2 = (bx * 0.5) + cx y2 = (by * 0.5) + cy x3 = ax + bx + cx y3 = ay + by + cy return (x1, y1), (x2, y2), (x3, y3) def calcCubicPoints(a, b, c, d): ax, ay = a bx, by = b cx, cy = c dx, dy = d x1 = dx y1 = dy x2 = (cx / 3.0) + dx y2 = (cy / 3.0) + dy x3 = (bx + cx) / 3.0 + x2 y3 = (by + cy) / 3.0 + y2 x4 = ax + dx + cx + bx y4 = ay + dy + cy + by return (x1, y1), (x2, y2), (x3, y3), (x4, y4) @cython.cfunc @cython.inline @cython.locals( a=cython.complex, b=cython.complex, c=cython.complex, d=cython.complex, p2=cython.complex, p3=cython.complex, p4=cython.complex, ) def calcCubicPointsC(a, b, c, d): p2 = c * (1 / 3) + d p3 = (b + c) * (1 / 3) + p2 p4 = a + b + c + d return (d, p2, p3, p4) # # Point at time #
[docs] def linePointAtT(pt1, pt2, t): """Finds the point at time `t` on a line. Args: pt1, pt2: Coordinates of the line as 2D tuples. t: The time along the line. Returns: A 2D tuple with the coordinates of the point. """ return ((pt1[0] * (1 - t) + pt2[0] * t), (pt1[1] * (1 - t) + pt2[1] * t))
[docs] def quadraticPointAtT(pt1, pt2, pt3, t): """Finds the point at time `t` on a quadratic curve. Args: pt1, pt2, pt3: Coordinates of the curve as 2D tuples. t: The time along the curve. Returns: A 2D tuple with the coordinates of the point. """ x = (1 - t) * (1 - t) * pt1[0] + 2 * (1 - t) * t * pt2[0] + t * t * pt3[0] y = (1 - t) * (1 - t) * pt1[1] + 2 * (1 - t) * t * pt2[1] + t * t * pt3[1] return (x, y)
[docs] def cubicPointAtT(pt1, pt2, pt3, pt4, t): """Finds the point at time `t` on a cubic curve. Args: pt1, pt2, pt3, pt4: Coordinates of the curve as 2D tuples. t: The time along the curve. Returns: A 2D tuple with the coordinates of the point. """ t2 = t * t _1_t = 1 - t _1_t_2 = _1_t * _1_t x = ( _1_t_2 * _1_t * pt1[0] + 3 * (_1_t_2 * t * pt2[0] + _1_t * t2 * pt3[0]) + t2 * t * pt4[0] ) y = ( _1_t_2 * _1_t * pt1[1] + 3 * (_1_t_2 * t * pt2[1] + _1_t * t2 * pt3[1]) + t2 * t * pt4[1] ) return (x, y)
[docs] @cython.returns(cython.complex) @cython.locals( t=cython.double, pt1=cython.complex, pt2=cython.complex, pt3=cython.complex, pt4=cython.complex, ) @cython.locals(t2=cython.double, _1_t=cython.double, _1_t_2=cython.double) def cubicPointAtTC(pt1, pt2, pt3, pt4, t): """Finds the point at time `t` on a cubic curve. Args: pt1, pt2, pt3, pt4: Coordinates of the curve as complex numbers. t: The time along the curve. Returns: A complex number with the coordinates of the point. """ t2 = t * t _1_t = 1 - t _1_t_2 = _1_t * _1_t return _1_t_2 * _1_t * pt1 + 3 * (_1_t_2 * t * pt2 + _1_t * t2 * pt3) + t2 * t * pt4
[docs] def segmentPointAtT(seg, t): if len(seg) == 2: return linePointAtT(*seg, t) elif len(seg) == 3: return quadraticPointAtT(*seg, t) elif len(seg) == 4: return cubicPointAtT(*seg, t) raise ValueError("Unknown curve degree")
# # Intersection finders # def _line_t_of_pt(s, e, pt): sx, sy = s ex, ey = e px, py = pt if abs(sx - ex) < epsilon and abs(sy - ey) < epsilon: # Line is a point! return -1 # Use the largest if abs(sx - ex) > abs(sy - ey): return (px - sx) / (ex - sx) else: return (py - sy) / (ey - sy) def _both_points_are_on_same_side_of_origin(a, b, origin): xDiff = (a[0] - origin[0]) * (b[0] - origin[0]) yDiff = (a[1] - origin[1]) * (b[1] - origin[1]) return not (xDiff <= 0.0 and yDiff <= 0.0)
[docs] def lineLineIntersections(s1, e1, s2, e2): """Finds intersections between two line segments. Args: s1, e1: Coordinates of the first line as 2D tuples. s2, e2: Coordinates of the second line as 2D tuples. Returns: A list of ``Intersection`` objects, each object having ``pt``, ``t1`` and ``t2`` attributes containing the intersection point, time on first segment and time on second segment respectively. Examples:: >>> a = lineLineIntersections( (310,389), (453, 222), (289, 251), (447, 367)) >>> len(a) 1 >>> intersection = a[0] >>> intersection.pt (374.44882952482897, 313.73458370177315) >>> (intersection.t1, intersection.t2) (0.45069111555824465, 0.5408153767394238) """ s1x, s1y = s1 e1x, e1y = e1 s2x, s2y = s2 e2x, e2y = e2 if ( math.isclose(s2x, e2x) and math.isclose(s1x, e1x) and not math.isclose(s1x, s2x) ): # Parallel vertical return [] if ( math.isclose(s2y, e2y) and math.isclose(s1y, e1y) and not math.isclose(s1y, s2y) ): # Parallel horizontal return [] if math.isclose(s2x, e2x) and math.isclose(s2y, e2y): # Line segment is tiny return [] if math.isclose(s1x, e1x) and math.isclose(s1y, e1y): # Line segment is tiny return [] if math.isclose(e1x, s1x): x = s1x slope34 = (e2y - s2y) / (e2x - s2x) y = slope34 * (x - s2x) + s2y pt = (x, y) return [ Intersection( pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt) ) ] if math.isclose(s2x, e2x): x = s2x slope12 = (e1y - s1y) / (e1x - s1x) y = slope12 * (x - s1x) + s1y pt = (x, y) return [ Intersection( pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt) ) ] slope12 = (e1y - s1y) / (e1x - s1x) slope34 = (e2y - s2y) / (e2x - s2x) if math.isclose(slope12, slope34): return [] x = (slope12 * s1x - s1y - slope34 * s2x + s2y) / (slope12 - slope34) y = slope12 * (x - s1x) + s1y pt = (x, y) if _both_points_are_on_same_side_of_origin( pt, e1, s1 ) and _both_points_are_on_same_side_of_origin(pt, s2, e2): return [ Intersection( pt=pt, t1=_line_t_of_pt(s1, e1, pt), t2=_line_t_of_pt(s2, e2, pt) ) ] return []
def _alignment_transformation(segment): # Returns a transformation which aligns a segment horizontally at the # origin. Apply this transformation to curves and root-find to find # intersections with the segment. start = segment[0] end = segment[-1] angle = math.atan2(end[1] - start[1], end[0] - start[0]) return Identity.rotate(-angle).translate(-start[0], -start[1]) def _curve_line_intersections_t(curve, line): aligned_curve = _alignment_transformation(line).transformPoints(curve) if len(curve) == 3: a, b, c = calcQuadraticParameters(*aligned_curve) intersections = solveQuadratic(a[1], b[1], c[1]) elif len(curve) == 4: a, b, c, d = calcCubicParameters(*aligned_curve) intersections = solveCubic(a[1], b[1], c[1], d[1]) else: raise ValueError("Unknown curve degree") return sorted(i for i in intersections if 0.0 <= i <= 1)
[docs] def curveLineIntersections(curve, line): """Finds intersections between a curve and a line. Args: curve: List of coordinates of the curve segment as 2D tuples. line: List of coordinates of the line segment as 2D tuples. Returns: A list of ``Intersection`` objects, each object having ``pt``, ``t1`` and ``t2`` attributes containing the intersection point, time on first segment and time on second segment respectively. Examples:: >>> curve = [ (100, 240), (30, 60), (210, 230), (160, 30) ] >>> line = [ (25, 260), (230, 20) ] >>> intersections = curveLineIntersections(curve, line) >>> len(intersections) 3 >>> intersections[0].pt (84.9000930760723, 189.87306176459828) """ if len(curve) == 3: pointFinder = quadraticPointAtT elif len(curve) == 4: pointFinder = cubicPointAtT else: raise ValueError("Unknown curve degree") intersections = [] for t in _curve_line_intersections_t(curve, line): pt = pointFinder(*curve, t) # Back-project the point onto the line, to avoid problems with # numerical accuracy in the case of vertical and horizontal lines line_t = _line_t_of_pt(*line, pt) pt = linePointAtT(*line, line_t) intersections.append(Intersection(pt=pt, t1=t, t2=line_t)) return intersections
def _curve_bounds(c): if len(c) == 3: return calcQuadraticBounds(*c) elif len(c) == 4: return calcCubicBounds(*c) raise ValueError("Unknown curve degree") def _split_segment_at_t(c, t): if len(c) == 2: s, e = c midpoint = linePointAtT(s, e, t) return [(s, midpoint), (midpoint, e)] if len(c) == 3: return splitQuadraticAtT(*c, t) elif len(c) == 4: return splitCubicAtT(*c, t) raise ValueError("Unknown curve degree") def _curve_curve_intersections_t( curve1, curve2, precision=1e-3, range1=None, range2=None ): bounds1 = _curve_bounds(curve1) bounds2 = _curve_bounds(curve2) if not range1: range1 = (0.0, 1.0) if not range2: range2 = (0.0, 1.0) # If bounds don't intersect, go home intersects, _ = sectRect(bounds1, bounds2) if not intersects: return [] def midpoint(r): return 0.5 * (r[0] + r[1]) # If they do overlap but they're tiny, approximate if rectArea(bounds1) < precision and rectArea(bounds2) < precision: return [(midpoint(range1), midpoint(range2))] c11, c12 = _split_segment_at_t(curve1, 0.5) c11_range = (range1[0], midpoint(range1)) c12_range = (midpoint(range1), range1[1]) c21, c22 = _split_segment_at_t(curve2, 0.5) c21_range = (range2[0], midpoint(range2)) c22_range = (midpoint(range2), range2[1]) found = [] found.extend( _curve_curve_intersections_t( c11, c21, precision, range1=c11_range, range2=c21_range ) ) found.extend( _curve_curve_intersections_t( c12, c21, precision, range1=c12_range, range2=c21_range ) ) found.extend( _curve_curve_intersections_t( c11, c22, precision, range1=c11_range, range2=c22_range ) ) found.extend( _curve_curve_intersections_t( c12, c22, precision, range1=c12_range, range2=c22_range ) ) unique_key = lambda ts: (int(ts[0] / precision), int(ts[1] / precision)) seen = set() unique_values = [] for ts in found: key = unique_key(ts) if key in seen: continue seen.add(key) unique_values.append(ts) return unique_values def _is_linelike(segment): maybeline = _alignment_transformation(segment).transformPoints(segment) return all(math.isclose(p[1], 0.0) for p in maybeline)
[docs] def curveCurveIntersections(curve1, curve2): """Finds intersections between a curve and a curve. Args: curve1: List of coordinates of the first curve segment as 2D tuples. curve2: List of coordinates of the second curve segment as 2D tuples. Returns: A list of ``Intersection`` objects, each object having ``pt``, ``t1`` and ``t2`` attributes containing the intersection point, time on first segment and time on second segment respectively. Examples:: >>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ] >>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ] >>> intersections = curveCurveIntersections(curve1, curve2) >>> len(intersections) 3 >>> intersections[0].pt (81.7831487395506, 109.88904552375288) """ if _is_linelike(curve1): line1 = curve1[0], curve1[-1] if _is_linelike(curve2): line2 = curve2[0], curve2[-1] return lineLineIntersections(*line1, *line2) else: return curveLineIntersections(curve2, line1) elif _is_linelike(curve2): line2 = curve2[0], curve2[-1] return curveLineIntersections(curve1, line2) intersection_ts = _curve_curve_intersections_t(curve1, curve2) return [ Intersection(pt=segmentPointAtT(curve1, ts[0]), t1=ts[0], t2=ts[1]) for ts in intersection_ts ]
[docs] def segmentSegmentIntersections(seg1, seg2): """Finds intersections between two segments. Args: seg1: List of coordinates of the first segment as 2D tuples. seg2: List of coordinates of the second segment as 2D tuples. Returns: A list of ``Intersection`` objects, each object having ``pt``, ``t1`` and ``t2`` attributes containing the intersection point, time on first segment and time on second segment respectively. Examples:: >>> curve1 = [ (10,100), (90,30), (40,140), (220,220) ] >>> curve2 = [ (5,150), (180,20), (80,250), (210,190) ] >>> intersections = segmentSegmentIntersections(curve1, curve2) >>> len(intersections) 3 >>> intersections[0].pt (81.7831487395506, 109.88904552375288) >>> curve3 = [ (100, 240), (30, 60), (210, 230), (160, 30) ] >>> line = [ (25, 260), (230, 20) ] >>> intersections = segmentSegmentIntersections(curve3, line) >>> len(intersections) 3 >>> intersections[0].pt (84.9000930760723, 189.87306176459828) """ # Arrange by degree swapped = False if len(seg2) > len(seg1): seg2, seg1 = seg1, seg2 swapped = True if len(seg1) > 2: if len(seg2) > 2: intersections = curveCurveIntersections(seg1, seg2) else: intersections = curveLineIntersections(seg1, seg2) elif len(seg1) == 2 and len(seg2) == 2: intersections = lineLineIntersections(*seg1, *seg2) else: raise ValueError("Couldn't work out which intersection function to use") if not swapped: return intersections return [Intersection(pt=i.pt, t1=i.t2, t2=i.t1) for i in intersections]
def _segmentrepr(obj): """ >>> _segmentrepr([1, [2, 3], [], [[2, [3, 4], [0.1, 2.2]]]]) '(1, (2, 3), (), ((2, (3, 4), (0.1, 2.2))))' """ try: it = iter(obj) except TypeError: return "%g" % obj else: return "(%s)" % ", ".join(_segmentrepr(x) for x in it) def printSegments(segments): """Helper for the doctests, displaying each segment in a list of segments on a single line as a tuple. """ for segment in segments: print(_segmentrepr(segment)) if __name__ == "__main__": import sys import doctest sys.exit(doctest.testmod().failed)